
Lab 3
A Quick Introduction to Multiple Linear Regression

Psychology 310

Instructions.Work through the lab, saving the output as you go. You will be
submitting your assignment as an R Markdown document.

Preamble. Today’s assignment involves looking at multiple linear regression
as an analysis technique.

1 The Multiple Linear Regression Model

Multiple linear regression is a generalization of simple bivariate linear regression.
Instead of having just one predictor, we have two or more. For example, suppose
we have 3 predictors, X1, X2, and X3. The prediction equation becomes

Ŷ = β0 + β1X1 + β2X2 + β3X3 (1)

The standard multiple regression model tested by commercial statistical pro-
grams does not actually assume anything about the distribution of the X vari-
ables. Actually, they are treated as fixed observations, or as “already given.”
Strictly speaking, this model is not correct for many studies in which the X vari-
ables and Y scores are gathered simultaneously, and all are subject to random
variation. Fortunately, it often doesn’t matter too much in practice.

The fixed regressor model does assume that observations on Y and X follow
the rule

yi = ŷi + εi (2)

where the ε values have a normal distribution that has a mean of zero and a
variance that is constant across values of the predictor variables. Under these
assumptions, we estimate the regression coefficients using a multivariate equiv-
alent of the least squares regression equations we learned in our module on
bivariate linear regression.

Fitting a multiple linear regression model in R is really simple.

2 An Example – Predicting Birth Weight

As an illustration, we shall examine some data on birth weight of babies. Down-
load the babies.data.txt file, read it into R, and attach it with the following
commands.

> babies.data <- read.table("http://www.statpower.net/data/babies.data.txt",

+ header = TRUE)

> attach(babies.data)
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It is reasonable to expect many if not all of these variables to have an impact
on birth weight. Length of the gestation period is obviously a key factor, but
physical size is inherited, so we would expect the mom’s height and weight to
also be predictors. Smoking has been identified as a potential cause of reduced
birth weight as well.

After loading the variables, let’s take a quick look at all the correlations. We
can look at all the intercorrelations by giving the command cor(babies.data),
but a more efficient command will display only the correlations between the
criterion, birth.weight, and the predictors.

> cor(babies.data, birth.weight)

[,1]

birth.weight 1.00000

gestation 0.40754

not.first.born -0.04391

mom.age 0.02698

mom.height 0.20370

mom.weight 0.15592

mom.smokes -0.24680

As you can see from the correlations, the gestation variable is the strongest
predictor.

We’ll want to spot any predictable nonlinear relationships as well, so let’s
do a scatterplot matrix. The scatterplotMatrix function in the car library is
especially good, because it includes a linear fit and a nonparametric regression
line called a loess fit in each little scatterplot. (You will need to have the car

library installed and running to execute this command.) Here are the commands.

> library(car)

> scatterplotMatrix(~birth.weight + mom.height + mom.weight + mom.age + gestation +

+ not.first.born + mom.smokes)
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We begin by fitting two simple models, one with only the intercept term,
and one with only one predictor, gestation.

> fit0 <- lm(birth.weight ~ 1)

> fit1 <- lm(birth.weight ~ gestation)

Note that as long as you have one predictor, you do not need the intercept
term, which is represented by a 1. The model with no predictors and only an
intercept is frequently referred to as the ”null”model in discussions of regression.

Let’s examine the fit of our first non-null model.

> summary(fit1)

Call:

lm(formula = birth.weight ~ gestation)

Residuals:

Min 1Q Median 3Q Max
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-49.35 -11.07 0.22 10.10 57.70

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.7541 8.5369 -1.26 0.21

gestation 0.4666 0.0305 15.28 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.7 on 1172 degrees of freedom

Multiple R-squared: 0.166,Adjusted R-squared: 0.165

F-statistic: 233 on 1 and 1172 DF, p-value: <2e-16

The squared multiple correlation of 0.166 is highly significant. However,
the scatterplot of birth.weight versus gestation gives us pause, because two
observations appear to be outliers. You can see this clearly by loading the alr3

library and using their residual.plots function, or simply by plotting the two
variables

> plot(gestation, birth.weight)

> abline(fit1, lty = 2, col = "red")
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Next, use the identify function to identify the outliers.

> identify(gestation, birth.weight)

Click on the points and you’ll quickly identify them as points 239 and 820.
Frequently outliers are also high influence observations. An observation is

high influence if it exerts a strong effect on the values of the estimated β coeffi-
cients. This is measured by taking a standardized summary measure comparing
β̂, the vector of estimated beta weights using all the data, with β̂i, the vector
of estimates based on all the data but the ith observation.

You can verify that point 239 is definitely an outlier and a high influence
observation by loading the alr3 library, then displaying the Cook’s Distance
measure against the case number, as follows:

> case.numbers <- 1:length(gestation)

> influence <- cooks.distance(fit1)

> plot(case.numbers, influence)
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Let’s remove these two cases and continue. We use a command that tells R
to exclude the 239th and 820th rows of the data. Then we detach the current
file and attach the trimmed data.

> trimmed.data <- babies.data[c(-239, -820), ]

> detach(babies.data)

> attach(trimmed.data)

> fit0 <- lm(birth.weight ~ 1)

> fit1 <- lm(birth.weight ~ gestation)

> summary(fit1)

Call:

lm(formula = birth.weight ~ gestation)

Residuals:

Min 1Q Median 3Q Max

-49.3 -10.9 0.2 10.1 53.7

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -22.2026 8.8885 -2.5 0.013 *

gestation 0.5073 0.0318 16.0 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.6 on 1170 degrees of freedom

Multiple R-squared: 0.179,Adjusted R-squared: 0.178

F-statistic: 255 on 1 and 1170 DF, p-value: <2e-16

Notice how the squared multiple R has improved a bit, and the slope of the
regression line has increased.

Our next step is to add a predictor to the regression equation. Let’s add
mom’s smoking as a predictor, and store the fit.

> fit2 <- lm(birth.weight ~ gestation + mom.smokes)

> summary(fit2)

Call:

lm(formula = birth.weight ~ gestation + mom.smokes)

Residuals:

Min 1Q Median 3Q Max

-50.55 -10.86 -0.18 10.01 50.49

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -13.6485 8.6930 -1.57 0.12

gestation 0.4881 0.0309 15.77 <2e-16 ***

mom.smokes -8.1717 0.9692 -8.43 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.2 on 1169 degrees of freedom

Multiple R-squared: 0.226,Adjusted R-squared: 0.225

F-statistic: 171 on 2 and 1169 DF, p-value: <2e-16

We can look for outliers in this multiple regression situation by plotting
predicted scores versus residual scores. Adding a horizontal line at zero helps
interpretation of the plot.

> plot(predict(fit2), residuals(fit2))

> abline(0, 0, lty = 2, col = "red")
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This regression suggests that kids grow about .45 ounces a day within the
range of the data, and that smoking reduces birth weight by about a half a
pound. Note that the R2 value increased, indicating that smoking adds about
4% more variance to what is predicted by gestation period.

We can compare these linear fits by significance with the anova command.

> anova(fit0, fit1, fit2)

Analysis of Variance Table

Model 1: birth.weight ~ 1

Model 2: birth.weight ~ gestation

Model 3: birth.weight ~ gestation + mom.smokes

Res.Df RSS Df Sum of Sq F Pr(>F)

1 1171 393956

2 1170 323499 1 70457 270.1 <2e-16 ***

3 1169 304953 1 18546 71.1 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The two F tests for these models are both highly significant, indicating that
each model is significantly better than its predecessor.
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