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Introduction

Introduction

If you took Psychology 310, you had a thorough introduction to set theory
and probability theory “from the ground up.”

RDASA Chapter 3 provides a very condensed account of many of the key
facts we developed.

I'll review these facts here, but lecture slides and recordings are also
available of material from Psychology 310 should you need them.

MWL use the notation p(A) to stand for the probability of an event A,
while | use the notation Pr(A).
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Set Theory

Some grounding in basic set theory is very useful to gaining a solid
understanding of probability theory.

Many books attempt to discuss probability theory while never formally
defining set theory, and instead relying on an “informal” version of set
theory. This saves time, but also reduces precision, depending on the
sophistication of the reader.

MWL use “informal” language and notation while | shall stick with the
formal notation of set theory. In the long run, it will be useful to you to be
able to read texts using either notational variation.
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Set Theory

Definition of a Set

A set is any well-defined collection of “objects.”

The term “object” is used loosely. It could refer to numbers, ideas, people,
or fruits.

The elements of a set are the objects in the set.
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Complement, Union, Intersection, and Difference
Set Theory
Complement, Union, Intersection, and Difference
The universal set ) is the set of all objects currently under consideration.
The null (empty) set () is a set with no elements.
The complement of A, i.e., A, is the set of all elements not in A (but in Q).

Consider two sets A and B:

The union of A and B, i.e., AU B, is the set of all elements in A, B, or
both.

The intersection of A and B, i.e., AN B, is the set of all elements in A and

B. Informal discussions of probability will refer to Pr(A and B) to signify
Pr(An B).

The set difference, A — B, is defined as the set of elements in A but not in

B. Thatis, A—-B=ANB.
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Set Partition and Mutually Exclusive Sets
Set Theory

Set Partition and Mutually Exclusive Sets

Two sets A and B are said to be mutually exclusive if they have no
elements in common, i.e., ANB =10

A set of events is exhaustive of another set if their union is equal to that
set.
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Set Partition and Mutually Exclusive Sets
Set Theory

Set Partition and Mutually Exclusive Sets

A group of nsets E;,i = 1,...n is said to partition the set A if the E; are
mutually exclusive and exhaustive with respect to A.

Note the following:
@ Any set is the union of its elements.

@ Any set is partitioned by its elements.
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Probabilistic Experiments and Events Probabilistic Experiments and their Sample Spaces

Probabilistic Experiments and Events

Probabilistic Experiments and their Sample Spaces

A probabilistic experiment E is a situation in which
© Something can happen.
@ What can happen is well-defined.

© The outcome is potentially uncertain.
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Probabilistic Experiments and Events Probabilistic Experiments and their Sample Spaces

Probabilistic Experiments and Events

Probabilistic Experiments and their Sample Spaces

Associated with every probabilistic experiment E; is a sample space S;

The sample space is defined as the universal set of all possible outcomes of
E;.
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Probabilistic Experiments and Events Elementary and Compound Events

Probabilistic Experiments and Events

Elementary and Compound Events

The elementary events in a sample space are the elements of S.
As such, they constitute the “finest” possible partition of S.

Example (Elementary Events)

You throw a fair die, and observe the number that comes up. The
elementary events are 1,2,3,4,5,6.
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Probabilistic Experiments and Events Elementary and Compound Events

Probabilistic Experiments and Events

Elementary and Compound Events

Compound events are the union of two or more elementary events.
Example (Compound Events)

In the die throw experiment, the event Even =2U4U6 = {2,4,6} is a
compound event.
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Axioms and Basic Theorems of Probability

Axioms and Basic Theorems of Probability

Given a sample space S and any event A; within S, we assign to each
event a number called the probability of A. The probabilities in S must
satisfy the following:

@ Pr(A)>0
Q@ Pr(S)=1

© If two events A and B in S are mutually exclusive, then
Pr(AU B) = Pr(A) + Pr(B).
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Axioms and Basic Theorems of Probability

Axioms and Basic Theorems of Probability

From the axioms, we can immediately derive the following theorems:
Pr(A) = 1 — Pr(A)
Pr(0) =

Pr(AU B) = Pr(A)+ Pr(B) — Pr(ANn B)
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Basic Rules for Computing Probability The General Rule

Basic Rules for Computing Probability
The General Rule

For any event A composed of elementary events ¢;, i.e., A= U?_;e;, the
probability of A is the sum of the probabilities of the elementary events in
A, ie, Pr(A) =37 Pr(e)

James H. Steiger (Vanderbilt University) 15 / 35



Basic Rules for Computing Probability The General Rule

Basic Rules for Computing Probability
The General Rule

Since the probabilities of the elementary events must sum to 1, if the
elementary events are equally likely, then every one of the ns elementary
event has a probability of 1/ns.

Consequently, the total probability of an event A can be computed as

Pr(A) = A (1)
ns

where nga is the number of elementary events in A, and ng is the number
of elementary events in the sample space.
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e el
Joint Events, Conditional Probability, and Independence

Joint and Marginal Events

In many situations, two or more physical processes are occurring
simultaneously, and we can define the elementary events of the sample
space to be the intersection of the outcomes on the two processes.

For example, | might throw a die and a coin simultaneously.

In that case, we have 12 elementary events, each one of which is an
intersection. They are HN1, HN2...,TN1,...TN®6.

The marginal events are the outcomes on the individual processes, i.e.,
H, T,1,2,3,4,5,6.
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e el
Joint Events, Conditional Probability, and Independence

Joint and Marginal Events

Here is a tabular representation.

Note that the probability of a marginal event in a row or column is the
sum of the probabilities of the joint events in that row or column. (Why?)
Die
Coin 1 2 3 4 5 6
H |HN1 | HN2 | HN3 | HN4 | HN5 | HNG6
T | TN1|TN2| TN3|TN4|TN5| TnN6
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Joint Events, Conditional Probability, and Independence Conditional Probability

Joint Events, Conditional Probability, and Independence
Conditional Probability

The conditional probability of A given B, written as Pr(A|B), is the
probability of A within the reduced sample space defined by B.

To evaluate conditional probability, we simply move inside the class of

events defined by B, and calculate what proportion of the events in B are
examples of A.

For example, suppose the probabilities of our joint events were as given in
the table on the next slide.
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Joint Events, Conditional Probability, and Independence Conditional Probability

Joint Events, Conditional Probability, and Independence
Conditional Probability

Die

1/6 1/6 1/6 1/6 1/6 1/6

Coin 1 2 3 4 5 6

12 H [1/6] 0 [1/6] 0 |1/6] 0

12 T |0 |1/6] 0 |1/6] 0 |1/6
e What is Pr(1|H)? Pr(1]|T)?
o What is Pr(H|1)? Pr(H|2)?

@ Notice that the conditional probabilities within any conditionalizing
event are simply the joint probabilities inside that event,
re-standardized so that they add up to 1.

@ They are re-standardized to add up to 1 by dividing by what they
currently add up to, i.e., Pr(B).

@ This leads to the formula for conditional probability often given as its

definition:
Pr(AN B)

Pr(B)
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Joint Events, Conditional Probability, and Independence Conditional Probability

Joint Events, Conditional Probability, and Independence
Conditional Probability

Conditional probability reflects how the probabilities of the outcomes on
one process change after we are informed about the status of the outcome
of the other process.

If knowledge of one process changes the probability structure for the other,
we say that the processes are dependent.

If knowledge of one process does not change the probability structure for
the other, then we say that the processes are independent.

This leads to two formally equivalent definitions of independence. Two
events A and B are independent if

Pr(A|B) = Pr(A) (3)

or

Pr(AN B) = Pr(A) Pr(B) (4)
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Sequences and the Multiplicative Rules Sequences as Intersections

Sequences and the Multiplicative Rules

Sequences as Intersections

Sequences of events are, of course, events themselves.
Consider when we shuffle a poker deck and draw two cards off the top.
The sequence of cards involves Card; followed by Card,.

If we now consider the event “Ace on the first card followed by Ace on the
second card,” we quickly realize that this is the intersection of two events,
i.e. A1 N Ay. How can we compute the probability of this event?
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Sequences and the Multiplicative Rules The Multiplicative Rules

Sequences and the Multiplicative Rules
The Multiplicative Rules

Recall that

Pr(B|A) = Pr(BN A)/Pr(A) = Pr(An B)/ Pr(A)

This implies that
Pr(AN B) = Pr(A) x Pr(B|A) (5)

If A and B are independent, the rule simplifies to

Pr(An B) = Pr(A) x Pr(B)
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Sequences and the Multiplicative Rules The Multiplicative Rules

Sequences and the Multiplicative Rules
The Multiplicative Rules

These rules are sometimes referred to as the multiplicative rules of
probability. They generalize to sequences of any length. For example,
suppose you draw 3 cards from a poker deck without replacement. Since
the outcome on each card affects the probability structure of the
succeeding draws, the events are not independent, and the probability of
drawing 3 aces can be written using the general multiplicative rule as:

Pr(A1 NAN A3) = Pr(Al) X PF(A2|A1) X Pr(A3|A1 N A2) (6)
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Probability Distributions

There are two fundamental types of random variables, discrete and
continuous

With discrete random variables, the number of events is countable.

With continous random variables, the number of events is not countable
and infinite, and continuous over at least some range on the number line.
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Discrete Probability Distributions
Probability Distributions

Discrete Probability Distributions

When the number of events is countable and finite, the probability of each
elementary event can be calculated, and the sum of these probabilities is 1.

In this case, each event has a probability, and the probability density
function, or pdf, is usually denoted p(x). This is the probability that the
random variable X takes on the value x, i.e., p(x) = Pr(X = x).

The cumulative probability function, F(x), is the cumulative probability up
to and including x, i.e., F(x) = Pr(X < x).
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Continuous Probability Distributions
Probability Distributions

Continuous Probability Distributions

When a random variable X is continuous, it takes on all values over some
continuous range, and so the number of outcomes is uncountably infinite.

For continuous random variables, the probability of a particular outcome x
cannot be defined, even if x can occur. The probability is infinitesimally
small.

Rather than defining the probability of x, we instead define an alternative
concept, probability density.

Probability density f(x) is not probability. Rather, it is the instantaneous
rate at which the cumulative probability F is increasing at x. That is, it is
the slope (derivative) of F(x) at x.

In a similar fashion, F(x) is the area under the probability density curve. It
is the integral of f(x).

Although the probability of a single value x cannot be defined with
continuous random variables, the probability of an interval can be. To
compute the probability of an interval, we simply take the difference of the
two cumulative probabilities. That is,

Pr(a < X < b) = F(b) — F(a)
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Probability Distributions Calculating Probability with R

Probability Distributions

Calculating Probability with R

R provides a set of functions for performing probability calculations for
many of the most important distributions.

The key function types are

@ d, for calculating probability (discrete r.v.) or probability density
(continuous r.v.)

@ p, for calculating cumulative probability.
@ g, for calculating inverse cumulative probabilities, or quantiles.

To perform these calculations, you need to know the code for the
distribution you are working with. Some common codes are:

@ norm. The normal distribution.
@ t. Student’s t distribution.

© f. The F distribution.

@ chisq. The chi-square distribution.

You combine the function type and the distribution name to obtain the
name of the function you need to perform a particular calculation.
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Probability Distributions Calculating Probability with R

Probability Distributions
Calculating Probability with R

What value of the standard normal distribution is at the 95th percentile?
> gnorm(0.95)
[1] 1.645

What is the probability that a t-variable with 19 degrees of freedom is less
than or equal to 1.00?

> pt(1, 19)
[1] 0.8351

What is the probability that an observation from a normal distribution
with mean 500 and standard deviation 100 will be between 600 and 7007

> pnorm(700, 500, 100) - pnorm(600, 500, 100)
[1] 0.1359
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Random Variables and Their Characteristics Random Variables

Random Variables and Their Characteristics

Random Variables

In many introductory courses, the informal notion of a random variable X
is that it is a process that generates numerical outcomes according to
some rule.

This definition suffices for practical purposes in such courses, and we can
get by with it here.

A more formal definition is that, given a probabilistic experiment E with
sample space of outcomes S, a random variable S is a function assigning a
unique number to each outcome in S.

Because each outcome is connected to a unique number, each unique
number inherits all the probabilities attached to its outcomes.

Here is a simple example from the discrete case of a die throw.
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Random Variables and Their Characteristics Random Variables

Random Variables and Their Characteristics

Random Variables

Suppose you throw a fair die, and code the outcomes as in the table below

Outcome (in §) 1 2
Value of X 1 0

3 4 5 6
1 01 0

The random variable X would then have the probability distribution shown
in the following table

x  Px(x)
1 1/2
0 1/2
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Random Variables and Their Characteristics Expected Value of a Random Variable

Random Variables and Their Characteristics
Expected Value of a Random Variable

The expected value, or mean of a random variable X, denoted E(X) (or,

alternatively, px), is the long run average of the values taken on by the
random variable.

Technically, this quantity is defined differently depending on whether a
random variable is discrete or continuous.

For some random variables, E(|X|) = oo , and we say that the expected
value does not exist.
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Random Variables and Their Characteristics

Variance and Covariance of Random Variables

The variance of a random variable X is its average squared deviation score.

We can convert a random variable into deviation scores by subtracting its
mean, i.e.,
X — E(X)

So the squared deviation score is
(X —E(X))?
and the average squared deviation score is
Var(X) = 0% = E [(X — E(X))?]
An alternate, very useful formula is
Var(X) = ok = E(X?) - (E(X)))?
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Random Variables and Their Characteristics

Variance and Covariance of Random Variables

In a similar vein, the covariance of two random variables X and Y is their
average cross-product of deviations, i.e.

Cov(X, Y) = E[(X — E(X))(Y — E(Y))] (7)
which may also be calculated as

Cov(X, Y) = E(XY) — E(X) E(Y) (8)
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Random Variables and Their Characteristics

The Algebra of Expected Values, Variances, Covariances and Linear Combinations

Properties of expected value and variance of a random variable are
developed in detail in the Psychology 310 notes, and in the handout
chapter on Covariance Algebra. For our purposes, the key properties are

@ Under linear transforms, the expected value (mean) of a random
variables behaves the same as the mean of a list of numbers, i.e., for
constants a, b and random variable X,

E(aX +b)=aE(X)+b 9)

@ If X and Y are random variables and are uncorrelated,

E(XY) = E(X)E(Y) (10)

© The mean, variance, and covariance of linear combinations follow the
identical rules we developed earlier. For example

E(aX + bY) = aE(X)+ bE(Y) (11)
Var(X+Y) = Var(X)+ Var(Y)

+ 2Cov(X,Y) (12)

Cov(X +Y,X—=Y) = Var(X)— Var(Y) (13)
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