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An implementation of the Gauss-Newton algorithm for the analysis of covariance struc-
tures that is specifically adapted for high-level computer languages is reviewed. With this
procedure one need only describe the structural form of the population covariance matrix, and
provide a sample covariance matrix and initial values for the parameters. The gradient and
approximate Hessian, which vary from model to model, are computed numerically. Using this
approach, the entire method can be operationalized in a comparatively small program. A large
class of models can be estimated, including many that utilize functional relationships among the
parameters that are not possible in most available computer programs. Some examples are
provided to illustrate how the algorithm can be used.

Key words: covariance structures, Gauss-Newton method, simplex models, second order fac-
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A simple method for estimating structural equation models (e.g., Bollen, 1989)
using high-level computer languages is described. Following Lee and Jennrich (1984),
and Browne and Du Toit (1992), the procedure is formulated so that the user specifies
only the covariance structure, sample data, and initial values for the parameters. While
the numerical method is a simple one, it is straightforward to use to estimate a variety
of standard models such as patterned covariance structures, factor analysis models,
and latent variable regression models. Furthermore, some models can be estimated
with this method that cannot be handled using widely available commercial programs
such as LISREL (J6reskog & S6rbom, 1989; but others also, as reviewed by Long,
1990). Some structures that are awkward, cumbersome or time consuming to set up
using complicated reparameterization in LISREL (Green & Palmquist, 1991; Rind-
skopf, 1983, 1984; Wothke & Browne, 1990), and which may not be feasible for large
problems, may be easier with this method.

There are several motivations for considering a general algorithm of this kind. The
first arises as a consequence of the diversity of structures in the class. It is surprising
how a small change to a model may make it difficult or impossible to fit using most
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available programs (e.g., Bentler & Lee, 1983). As in nonlinear regression (e.g., Pickle,
1991), a very general program is required so that the largest possible number of models
can be studied. The algorithm outlined is applicable to a wider class of models than can
be estimated with most programs.

A second motivation for a procedure of this kind is methodological. Developments
in covariance structure analysis have accumulated at a steady rate in recent years, and
show no indication of dropping off. Yet there is often considerable delay between the
publication of a new technique and its incorporation into the major programs. Further-
more, computer programs are idiosyncratic. One software author may include a par-
ticular goodness-of-fit index or other computational idea for structural models that
another author ignores. Methodological progress is most rapid when the basic calcu-
lations are understood by a wide community of researchers.

A third motivation is pedagogical. Students of quite different levels of experience
have found the exercise of implementing and applying the algorithm valuable.

Several approaches based on general computer programs have already been pre-
sented for covariance structure analysis. Typically, one supplies Fortran statements to
describe the model. For example, Browne and Du Toit (1992) introduced a program that
handles the widest range of problems yet defined for single populations, including
arbitrary models for mean structures. An important feature of this program is its use of
a very efficient method for nonlinear constraints that is much more flexible than has yet
been implemented. Fraser (1979) described a program based on a model of McDonald
(1978) in which nonstandard structures are specified via user-supplied subroutines for
both the model and its derivatives. Lee and Jennrich (1984) have shown how the
subprogram PAR of the BMDP system, a program for nonlinear regression, can be
applied to covariance structure analysis. PAR can produce generalized least squares
and ordinary least squares estimates, but it does not seem possible to use this method
for maximum likelihood estimation. (To produce maximum likelihood estimates as
iteratively reweighted GLS estimates requires that the GLS weight matrix be set equal
to the current value of the estimated covariance matrix at the beginning of each itera-
tion; that is, to set W = ~(~/) in (2) below. But then the gradient and approximate
Hessian must be computed ignoring the dependency of W on ~,. PAR does not do this,
but instead repeatedly updates the weight matrix during each iteration for the secant
approximations to the gradient. The resulting procedure gives true generalized least
squares estimates, Swain, 1975, not normal theory maximum likelihood.)

The approach taken here is similar in spirit to these methods, but is based instead
on high-level languages such as Gauss, Speakeasy, or Matlab. We have used Proc IML
in the SAS system (SAS/IML, 1985) because it is widely available on mainframe com-
puters. Therefore, additional special purpose hardware or software are not required.
The hallmark of these languages is that their library of intrinsic functions includes linear
algebraic operators in addition to standard scalar functions. This makes it possible to
write extremely compact programs that, in a few lines, duplicate the work of thousands
of lines of code of a lower level language. Similar to Browne and Du Toit (1992) and 
Lee and Jennrich (1984), derivatives needed for the algorithm are computed numeri-
cally. The method is illustrated by discussing several models in detail.

Overview of the Procedure

The basic problem in the analysis of covariance structures is to estimate the pa-
rameters of a model, ~/ = (71 ..... 3’q)’, by minimizing the difference between the
covariance matrix implied by the model, ~ = ~E(~,), and a sample covariance matrix, 
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based on N = n - 1 p-variate observations, X1 ..... XN. The most frequently used
discrepancy functions are normal theory maximum likelihood,

M(~, S) = tr (~-aS) - In I~-lsl (1)

generalized least squares (GLS),

I
G(~, S) = ~ tr {[W(S - ~)]2}, (2)

where typically W = S-l , and ordinary least squares

1
L(~, S) = ~ tr (S - ~)2.

In general, these functions are minimized by means of an iterative method. Several
different algorithms can be used for this problem (e.g., Thisted, 1988, sec. 4), although
not all are equally etticient. In an important paper, Lee and Jennrich (1979) showed that
the classical Fisher scoring method for minimizing (1) is equivalent to the Gauss-
Newton method that is generally recommended for weighted least squares problems
such as (2). This means that essentially the same algorithm can be used to produce both
kinds of estimates.

Let F(~, S) denote one of the functions M(~, S), GCE, S), or L(E, S). The 
algorithm is defined by the step

~,(t+ l) = ~/(t) _ H-1 g, 

where g’ = (91, ¯ ¯ ¯ , gq) is the gradient ofF, and the symmetric matrix H = {hij, i,
j = 1, ... , q} is an approximation to the Hessian, both evaluated at ~/(t), the value of
the parameter vector at iteration t. Disregarding terms of order two or higher in the
Taylor series approximation to the second derivatives, several authors (e.g., Browne,
1982, Sec. 1.9; JOreskog, 1981, sec. 3.3; Lee & Jennrich, 1979, sec. 3) have exploited
the relationship

oEF 1
~~ hij = tr (A-I~IA-I~j), (4)
OyiO,~j "~

and

OF 1

Oyi tli -~ tr (A-l(~ S)A-l$i), (5)

under the assumption of multivariate normality if (1) or (2) are chosen. Depending 
the discrepancy function, define A = ~(~,~t)), A = S, or A = I for M(E, S), G(E, 
or L(~, S), respectively. The matrix ~i contains the partial derivatives of the covari-
ance matrix with respect to the i-th parameter evaluated at ~,(t); that is,

( ’jk 

With (1) or (2), if the distribution assumption of multivariate normality is tenable
and if the model holds, then at the minimum, the likelihood ratio test statistic, nF,
for the hypothesis H0: ~ -- ~(~/) is distributed approximately as chi square with



214 PSYCHOMETRIKA

1 2
~(p + p) - q degrees of freedom in large samples. The square root of diagonal
elements of (nil) -~ are approximations to the standard errors for

Once a structure ~;(~/) has been specified, the only difficulty in implementing (3) 
estimate a model is in computing the q matrices of partial derivatives ~;i used in (4) and
(5). Instead of setting these up for each different model, they can be approximated
numerically to quite a reasonable degree by using the finite forward difference method
of differentiation extended to matrix derivatives (e.g., Burden & Faires, 1989, sec. 4.1):

0~, ~,(~1(t) + eih ) - ’~2-,("~(/))

~i=~y/(~/(’))~ h
’ i= 1,..., q.

Here h is a small positive constant (e.g., h = 10 -7), and i i s avector of length q whose
only nonzero entry is unity at the i-th position.

This sketch completes the essential features of the procedure; however, two com-
mon problems encountered during estimation merit further comment. First, when max-
imum likelihood is chosen as the discrepancy function, a poor initial estimate of ~/can
generate A = ~E(~,(t)) in (4) and (5) that is numerically singular. In this situation, Browne
and Du Toit (1992) have used the effective method of switching to GLS until ~(~,(t)) 

again positive definite, at which point a switch back to maximum likelihood is again
made. This practice was followed here as well. Second, if the approximate Hessian is
singular, because, for example, the model is unidentified, then the update in (3) cannot
be computed directly. Singularity of I-I may also occur because of a particular value of
~,(t), or may occur because one or more parameters are superfluous, or may result from
a condition of the data. One way to handle this situation corresponds roughly to a
suggestion made by Jennrich and Sampson (1966) to solve the system of linear equa-
tions implied by (3), lid = -g, for d by successive sweep operations, but only if the
relevant pivot element of li exceeds a specified tolerance. If a particular row and
column of li are not swept, then the associated element in d is set to zero, and the
corresponding element in ~/(t) is not updated. This modification is invaluable because 
usually allows the iterative process to continue. Further, the unswept elements can
serve as a guide to modifying the model appropriately.

The appendix contains a listing of this algorithm written for Proc IML (SAS/IML
User’s Guide, 1985) to estimate the well-known Stability of Alienation model
(Wheaton, Muthrn, Alwin, & Summers, 1977). Other high-level matrix languages such
as Speakeasy, Gauss, or APL would provide an equally appropriate environment for
implementing this method. IML is convenient, however, since it is widely available on
mainframe computers, and allows one to take advantage of the SAS system for other
operations. To adapt this code for a particular problem, one need only change the listing
given here by (i) describing the structure, ~;(~,); (ii) supplying the data, most often 
form of a sample covariance matrix; and (iii) providing an initial approximation to the
parameter vector, ~,(0).

Examples

These ideas will be illustrated with two factor analysis models, and two structures
for the quasi-simplex pattern. It is possible to estimate versions of the simplex models
using commercially available programs, but both require complicated reparameteriza-
tions because the structures are not special cases of these programs. While reparam-
eterizations are effective, they obscure the sense of the model and often require sec-
ondary calculations to obtain the desired parameter estimates and their standard errors.
The first two models are discussed in some detail because the data sets are realistic, and
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because this approach to estimating them highlights certain features of each that have
not been pointed out before.

A Power Function for True Score Correlations
The first example is based on a power function for true score correlations originally

described by Anderson (1960). Morrison (1990, sec. 9.9) subsequently reviewed 
structure and briefly compared its properties to related models. JSreskog (1970) gave 
comprehensive overview of simplex structures and formulated a version of this model
that allows it to be estimated within the LISREL framework. However, we know of no
instance where the power model in its original form has been applied directly to data.

In a simplex it is assumed that a particular pattern applies to the observed score
correlation matrix. With a quasi-simplex the observed scores are assumed to be mea-
sured with error, so that the associated true score correlations follow the simplex
pattern directly. Since the latter assumption is more realistic in the behavioral sciences,
quasi-simplex structures are more justifiable. Let Xj, j = I, ... , p, have %(Xj) = 
and let

x~ = ~(t~.) + e~..

The true scores, ~(tj), are a function of unknown scale points tj, ordered such that
0 <- t1 <- ... <- tp. It is assumed that the components have expectations %(~(tj)) 
%(ej) = 0, and variances Sf = var (~(tj)) and 0~ = var (ej), while cov (~(tj), e~) 
0 for all j, k = l, ... , p. A quasi-simplex is said to follow a Markov process if the
correlation function between ~(tj) and 5(t~) has the form

Pjk = P }tj - tk], (6)

for a parameter 0 < p < 1. The symmetric matrix P(p x p), with diag (P) = I, 
composed of these elements: P = {pjk}. Since tj ~ t~ for j > k, P displays the
characteristic simplex pattern in which correlations decrease in magnitude as one
moves away from the diagon~. Let D~ = di~ (~1, ..., ~) and 0 =diag (01, .. ., Op).
Then the cov~ance matrix for X is

~ = D~PD~ + D~. (7)

There are several indeterminacies in this structure that must be eliminated before
it can be estimated. The scale and origin of t are arbitrary, because in (6) only the
d~erences tj - tk enter into the exponent. The coe~cient of the power function is also
arbitrary, since for a different pair of scale values, 7j ~ tj and i’~ ~ t~, there exists
~ ~ p, such that

h ~ - ~’~ = P t~ - ~, (8a)

when

(tj -- tk) In p
In/i = ~’j - {k (8b)

There are several ways to identify the model. As an example, four of the scale points,
such as t l, /2, tp_ 1, and tp, can be constrained in various ways. This approach allows
p to be estimated. Alternatively, one can fix p plus three of the scale points. Since
estimates of tj are the most interesting components of the model, it seems preferable to
take the latter approach so that an additional value of tj can be estimated. One set of
three constraints is tl = 0, t 2 = 1, tp = 1 + tp_1.
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Although the value of t9 is somewhat arbitrary, care must be taken in deciding on
a particular value. This is because

O’21 O’pl t~p _ 1
81pt2-t, -- , and 8pD t’-tp-’ - , (9)

~2 0-p- 1,1

(Anderson, 1960, p. 212) where 0-# is an element of X in (7). (Here we take the general
case in which the differences t2 - tl and t. - 1 are not necessarily unity.) Errors
and true scores are uncorrelated, so that 0-~ t4f + Of. This equality in conjunction

with (9) imposes a lower bound on p that is typically greater than the nominal restriction
p > 0. To ensure that both 012 > 0 and 0p2 > 0, the value specified must satisfy

p > max (b~, bp), (10)

where

= ( 0"21 /(t2 --I1)-1 ( / (/p - tp- 1)-1
bl \~l~) ’andbp = "0-pI6p:I’"

Maximum likelihood estimates of the standard deviations are equal to their sample
counterparts, so ~’11 = S 11 and &pp = spp, but the other components of b 1 and bp are
unknown. Thus, the above relationships cannot be used to determine p before the
model is applied to data. In the problems tried to date we have arbitrarily taken 19 =

0.95, which has worked satisfactorily. The true score correlations pj~, j -> 2, and
k -< p - 1, vary as a function of p, but all other correlations, Pjk, P -- 1 >-- j > k >-

2, are invariant with respect to p. This is because the scale values, t3, ... , tp_l, are
free to vary according to (8) as a function of p. With p fixed, there are a total of 3p 

3 parameters in the model, namely (6~, ... , 6p, 01, ¯ .. , 0p, t3, ... , tp_l).
In some cases, it may be reasonable to impose other restrictions on D~ or D0.

Depending on how this is done, additional values of t can often be estimated. For
example, if the residual variances are homogeneous, then Do = I0 for the single pa-
rameter 0 >- 0. Only one element of t must be fixed in this case, most reasonably t ~ =

O. The number of parameters would be only 2p, (6~, ... , 6p, O, 2, . .. , tp ).
It is sometimes useful to write the model in the form

F., = D~(P + Do2)D~, (11)

so that the residual variances are proportional to true score standard deviations. If both
D~ and Do are unconstrained, then (I1) is equivalent to (7) and D02 in the former 
simply a rescaling of D02 in the latter. If either D~ or Do are restricted in some manner,
however, then the two structures are not in general equivalent, and one form may be
preferable because the fit is better, even though the degrees of freedom are the same.

Negative residual variance estimates can sometimes occur, unless these estimates
are constrained to be nonnegative. Consequently, it is prudent to estimate the standard
deviations of the residuals, (0~, ... , Op), and then add their squares to the diagonal
elements of ~E as in (7) and (11). This well-known parameterization restricts the variance
estimates to the admissible region Of >- O.

Both forms of the model are scale invariant as long as D~ is unconstrained. If the
covariance matrix is rescaled by an arbitrary diagonal matrix De in D~XD,,, then t and
the correlation matrix P will be unchanged, while the rescaled version of D~ and Do will
be D~D~ and DoD~2, respectively. The test statistic is the same in either rescaling.
Finally, it should be noted that because of the power function (6), this model is appro-
priate only for sample data in which the covariances among variables are nonnegative.
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TABLE 1

Summary Data for Eleven Trial Blocks of Reaction Time.

217

Trial 1 2 3 4 5 6 7 8 9 10 11

2 .696 --

3 .551 .808 --

4 .483 .710 .893 --

5 .372 .606 .784 .856 --

6 .373 .590 .750 .811 .899

7 .330 .541 .712 .762 .844

8 .297 .503 .663 .739 .820

9 .288 .470 .625 .699 .768

10 .246 .420 .559 .643 .724

11 .250 .399 .547 .627 .688

.887 --

.881 .903

.827 .849

.759 .801

.730 .758

.905 --

.836 .891 --

.817 .867 .897

SD 92.6 63.1 50.3 40.9 37.9 33.2 30.5 28.8 27.6 27.6 25.8

Mean 242 193 169 149 142 133 127 123 119 116 112

Note: Data are described in Woltz (1988). N= 401.

To illustrate this model, some data originally gathered by Woltz 0988) were ana-
lyzed. In this study, Air Force recruits were trained in a complex procedural learning
task during a single experimental session. Both response errors and latencies were
recorded, but only the reaction time measures were analyzed here. The data were
summarized into eleven blocks of sixty-four trials each. Four hundred twelve subjects
had complete data at the end of the experiment. Of this number, eleven cases were set
aside due to unusually slow or fast response times. The resulting summary data for
N = 401 subjects are shown in Table I.

The model in (11) was fit by maximum likelihood. The value of the likelihood ratio
test statistic for the null hypothesis that the model holds compared to the unstructured
alternative hypothesis was 2,2 = 45.8, on df = 36, with an upper tail probability of 0.13.
Parameter estimates are in Table 2. Since b1 = 0.70 and bp = 0.94, the fixed coef-
ficient of the power function p = 0.95 satisfies (10). Examining ]j showed that pro-
gressing from the first to the fifth trial blocks corresponded to the greatest improve-
ments in true reaction time. The improvement between later blocks was steady but less
dramatic. After trial five, improvement between trial blocks corresponded to an incre-
ment of about one unit in the t-scale for the remainder of the experiment. Two esti-
mated residual variances were at their boundary. It is interesting that the estimate
~12 = 0.863 is roughly ten times greater than the residual for the variable with next
largest value. Thus there is appreciable "noise" in the reaction time measurements for
trial block one. The effect of this error is best observed by comparing the estimated true
score correlations between Trial 1 and Trials 2-11, ~bjl, j --> 2, in the lower section of
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TABLE 2

Maximum Likelihood Estimates of Quasi-simplex Model with Power Function.

1 2 3 4 5 6 7 8 9 10 11

~j: 0.00" 1.00" 5.16 7.10 9.35 10.4 11.4 12.2 13.4 14.4 15.4"

-- -- .419 .541 .704 .775 .830 .868 .931 .989 --

~j: 67.8 63.1 50.3 40.3 36.9 32.4 29.2 28.3 27.1 26.5 25.4

4.24 2.23 1.78 1.49 1.40 1.21 1.13 1.05 1.00 1.02 1.03

~: .863 0.00~ O.OOt .028 .055 .048 .093 .039 .039 .085 .034

.138 -- -- .015 .015 .012 .015 .011 .011 .015 .018

0.9501 ij-ikl .

1.0
.95 1.0

.77 .81 1.0

.70 .73 .91 1.0

.62 .65 .81 .89 1.0

.59 .62 .76 .84 .95

.56 .59 .73 .80 .90

.54 .56 .70 .77 .87

.50 .53 .66 .73 .81

.48 .50 .62 .69 .77

.45 .48 .59 .65 .73

(Estimated True Score Corrdations)

1.0

.95 1.0

.92 .96

.86 .91

.82 .86

.77 .81

1.0
.94 1.0

.89 .95 1.0

.85 .90 .95 1.0

Note: Standard errors are below estimates. *Fixed parameter. ~Parameter on boundary.

Table 2, with the corresponding observed score correlations shown in Table I. The
differences (~bjl - rjl) are rather large, generally on the order of 0.20. On the other
hand, the other estimated true score correlations seldom differ by more than 0.05 from
their observed score counterparts. Overall, the quantitative summary seems quite rea-
sonable for an experiment of this kind. This completes the first illustration of the
method.

Other structures for the quasi-simplex can also be fit directly by this method. For
example, a quasi-Wiener simplex (e.g., JSreskog, 1970, sec. 3) is generated by the
correlation function

Pkj = ,

for the scale points w, > wj. Taking Dw = diag (~/~-~ ..... ~Wp) and Do = diag
(0~2, ... , 0p2), the covariance structure is

~ = D.,PD., + Do.
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/ /
~)2 1.)3 1~4

F~GU~ 1.
Model for quasi-simplex with autoregressive structure between true scores and between error scores.

or more simply,

{w, + O~,
O’jk = .

w,, k<j

This structure is identified if one restriction, for example 0p2 = 0, is imposed, so a total
of 2p - 1 parameters are required.

A Double Autoregressive Model
Wiley and Wiley (1974) presented a rather different idea for a quasi-simplex in 

longitudinal design. In this model, there is one autoregressive structure between the
true scores and a second autoregressive relationship between the error scores. A rep-
resentation of the model is in Figure 1. Analogous to the development above, consider
the decomposition Xj = ~j + ej, forj = 1, ... , p. The true scores are not indepen-
dent but rather are related by the linear function

~ = ~j-~ +~,

for j -> 2. Similarly, the error scores have the relationship,

ej = q’rej-1 q- i.’j,

for j -> 2. The common coefficient of each true score regression is a, while zr is the
coefficient common to each regression between error scores at adjacent time points.
The variables ~’j and vj are the residuals of the true score and error score regressions,
respectively. It is assumed that all other pairs of variables are uncorrelated; thus, cov
(¢j, ~,) =cov (¢j, ~k) =cov (¢~, ~,) =cov (¢~, ~’k) 

A distinguishing feature of this model is that the error variance is taken as constant
for all variables:
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var (el) = ... = var (ep) = ~/2. (12)

This implies that the variance of the regression residuals for error scores is also con-
stant,

vat (u~.) = (1 - ~r 2) vat (ex), j 

As a consequence of (12) and the autoregressive structure among residual scores, the
covariance matrix among ey is a power function of only two terms

~Ojk = COV (ej, ek) = T2"trIj -k].

For example, when p = 4,

~.3 77.2 "h" 1

Define the variance of the true scores for the first variable as ~1 = var (El), and let
the variances of the regression residuals be ~bj = vat (~’j), j -> 2, with 0 = diag
(~1, ̄  ¯ ̄  , ~Op). Because true scores and error scores are uncorrelated, the structure 

where

fl = (I - A)-ID¢(I - A’) -~

a~bl a2~01 + ~/2

a2~bl a3@l + a~b2

a31~l Ot 41]/1 +

(13)

a4~bl + a2~b2 + ~b3

a6~bl + a4~b2 + a2~03 +

0
0 0 0 ... a 0

The model has an attractive simplicity. There are onlyp + 3 parameters, namely (a,
¯ r, y2, ~1, ..., Op)- Obviously the model is not invariant with respect to arbitrary
rescalings of the variables because restrictions are imposed directly on the residual
variances according to (12). Consequently, the sample covariance matrix must be an-
alyzed.

Although this model was proposed some time ago, it has seldom been applied,
perhaps because the structure cannot be easily specified in most computer programs.

Here A(p x p) is a matrix with all elements on the first subdiagonal equal to 

a 0
0 a 0
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TABLE 3

Correlations and Standard Deviations for Eight Semesters of GPA.
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Semester 1 2 3 4 5 6 7 8

1

2 .556 --

3 .456 .490

4 .439 .445

5 .399 .418

6 .415 .383

7 .387 .364

8 .342 .339

.562 --

.496 .512

.456 .469

.445 .442

.354 .416

.551 --

.500 .544

.453 .482 .541

SD .57 .57 .57 .54 .59 .58 .59 .59

Note: From Humphreys (1968, Table 2); N is approximately 1,600.

Recently Green and Palmquist (1991) presented a clever, but complicated, parameter-
ization of this model that can be implemented with available software. However, if
these programs are used to fit the model, the number of latent variables required for the
nonlinear constraints in (12) is very large: 10p - 4. So while estimation of the model
with standard programs is possible, it may be more convenient and practical to use a
direct method instead.

To illustrate how this model can be estimated with the current procedure, some
data originally reported by Humphreys (1968) were analyzed. They are reproduced 
Table 3. The variables are p = 8 semesters of GPA for a sample of approximately N =
1,600 students. These data were previously analyzed by Werts, Linn, and JOreskog
(1978) using an equivalent form of the power function model in (7) with (6) 

The value of the maximum likelihood test statistic for the hypothesis that the model
in (13) holds against the general alternative was 2 =38.4 ondf = 25,withan uppertail
probability of 0.04. Parameter estimates and associated standard errors were

& = .940 (.010), ¢r = .056 (.021), ~2= .149 (.005),

~j .176 .006 .044 .003 .041 .019 .027 .035
(.010) (.006) (.007) (.006) (.006) (.006) (.007) 

In interpreting these estimates, it should be recalled that @1 = var (El), while ~bj = var
(¢j), for j -> 2. The autoregression effect among true scores was therefore relatively
strong. The largest of the true score regression residual variances was only .044. Com-
paring values of (bj to se((bj) suggested that 2 and ~b4 may bezero. Themodest value
of ~" = .056 and 2the relatively large value of ~ = . 149 means that the corresponding



222 PSYCHOMETRIKA

autoregression effect among the error scores was quite small. The largest of the esti-
mated error score correlations were those between adjacent variables, for which the

correlation between ej and ej-1 is ~r = 0.056. This suggests that a modified model
without the auto-regressive structure for error scores might be tried, although we did
not pursue the possibility here.

Standardized Second-Order Factors

The next example illustrates that a seemingly minor change to a model that is
otherwise easily estimated by all programs may make the modified model impossible to
handle without a more general approach. Using a set of twelve ability variables, Rind-
skopf and Rose (1988) studied several second-order factor analysis models,

X = A(BOB’ + Dv)A’ + O,. (14)

In one instance (Table 4, p. 63), they specified that De = {$j} and D~ {vk} be
diagonal matrices of order twelve and five, respectively, ¯ was a 2 x 2 correlation
matrix with diag (O) = I, and the first-order and second-order factor patterns had the
structure

and

0 0 0 A5 A 6 0 0 0 0 0 00

0 0 0 0 0 A7 A8 0 0 0 ,

0 A3 A4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 A9 AIO All A12_J

0 0 ~42 fl52 ’

respectively. To identify the variances of the first-order factors, they used the restric-
tions A1 = A3 = A5 = A7 = A9 = 1.

Alternatively, one could estimate all twelve coefficients in A, and impose the
restriction

diag (BOB’ + Dr) -- (15)

Then the second-order factors are standardized with unit variance. Elements of D~ are
not free parameters but instead satisfy the identity

D~ = I - diag (BOB’).

This method of identification is particularly convenient if the subsets of variables as-
sociated with each first-order factor are parallel or tau-equivalent (see Jrreskog, 1981,
sec. 2.2). For if the variances of the second-order factors are constrained as in (15), 
can avoid the arbitrary step of fixing one of the factor loadings to unity to identify the
factor variances.

Rinsdkopf (1984) described a way to impose the needed restriction with current
programs, but the parameterization works only for models in which each first-order
factor loads on one second-order factor. If the first-order factors are complex, the
structure cannot be estimated using this method. For example, one might wish to
estimate ill2 under model (14) maintaining restriction (15). While this appears not to 
a major change to the structure, the addition of BilE takes the resulting model out of the
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TABLE 4

Maximum Likelihood Estimates of a Second-Order Factor Analysis Model.

.922 ~i .150

.933 ~2 .130

.914 ~a .165

.864 ~4 .253

.891 ~5 .207

.865 ~6 .253

.901 @~ .189

.866 ~8 .250

.605 ~o .634

.580 ~o .664

.725 ~1~ .475

.487 ~ .762

~I .459 v~ ¯560

fl~t .806 v2 .351

~a~ .633 va .599

~ .564 v4 .682

~2 ¯870 v~ .244

fit2 .252

.715

’1.0

.53 1.0

.43 .47 1.0

.30 .33 .27 1.0

¯ 47 .52 .42 .49 1.0

Note: The unique variances of first-order factors, Vk, are not free parameters,

but rather are constrained so that ~/~¢t +/~2 + 2~kl/~k2~21 q- /~k = 1

class of structures that can be handled by standard programs. On the other hand, the
model is simple to estimate with a more general procedure.

The estimates in Table 4 were obtained by fitting this structure to the data pre-
sented by Rindskopf and Rose (1988, Table 1). Because elements of v are not f ree
parameters, there are a total of q = 31 parameters, with df = 47. The value of the test
statistic is X2 = 50.49, with an upper tail probability of 0.34. The correlation matrix
among first-order factors is in the lower section of the table, where as required, diag
(]~]~’ + 1)~) = 

It is likely that the constraints needed to estimate this particular model will be
incorporated into commercial programs before long. That present versions of these
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programs cannot estimate this structure is a secondary point. The more important issue
is that general programs frequently are required to estimate models that are outside the
domain of standard programs. This can be important even when seemingly minor
changes are needed.

A Model for Dichotomized Variables

Christoffersson (1975) considered a factor analysis model for dichotomized vari-
ables that utilizes the marginal distribution of single items and the joint distributions of
item pairs. Since the model was developed for binary variables, and includes transfor-
mations that relate dichotomized observed variables to continuous latent variables, it is
completely outside the domain of popular programs for structural equation models.
Nonetheless, it is a simple matter to employ the general method used here to produce
least squares estimates of this model.

Let the correlation matrix among continuous, unobserved variables, Y1, ̄  ¯ ¯ , Yp,
be

P = kk’ + D~, (16)

where diag (P) = I, and where it is assumed for simplicity that a single factor holds. 
in (15), elements of Dz are not free parameters, but rather D~ -- I - diag (kk’).
Associated with each variate is a coefficient, hi, the threshold for the observed binary
variable, Y~, with scores

y,={~ ifYj>-hJ’otherwise.

In this context, the structure ~(~/) does not represent the covariance matrix among
observed dichotomous scores. Instead, it is the matrix of proportions of endorsed
responses

~erob(Y~= I) j=k
¯ = {o’jk} = I. Pr°b (Y~ 1, Y] = 1) j#k (17)

Denote the density of the standard normal distribution by q~l (z), and of the standard
bivariate normal density, with coefficients z = (z l, z2)’, 

~2(z) = 2~r(1 - O~k)~/2 exp - ~.,[p]j~l~. ,

where [P]j~ = (~ ~k) is a 2 x 2 submatrix for items j and k from P in (16). 
distribution functions are, respectively,

and

~l(h) =y?~ ~l(Z) dz,

dP2(hj, hk; [P]~’k)=fh_[ fh_f

Rewriting (17), the components of ~(~/) 

~2(Z) dzk dzj.
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11 -- ~l(hj)

j = k, (18a)
trjk(V) =

(I)l(hj) - dPl(hk) tY P2(hj, hk ; [P ]jk) j # k, (18 b)

where ~, = (hi, ..., hp, ~.1 .... ,
Although the model is not a covariance structure for continuous variables, the

marginal and joint proportions of the dichotomous items can be computed as the ele-
ments of a symmetric, matrix-valued function of ~,. To compute GLS estimates or
maximum likelihood estimates would entail a modification of this procedure because
these estimators utilize additional information on the distribution of ¥*. Ordinary least
squares, however, can be applied directly. Compared to the more routine applications
of the method, all that is needed are approximations to the distribution functions ̄  1 (h)

and (I) 2 (hi, hk; [P]jk). The joint probability (18b) can be efficiently written as a single
integral (Froemel, 1971), so that Gaussian quadrature, which is straightforward 
implement in high-level computer languages, works well here.

Christoffersson presented GLS estimates of this model for two sets of five items
originally studied by Bock and Lieberman (1970), and that have been subsequently
analyzed by many writers. The joint and marginal frequencies for the p = 5 items of the
LSAT Section 6 based on N = 1,000 are shown in the upper section of Table 5. Least
squares estimates of h j, Aj and ~j = 1 - Aj2 are shown in the lower section of the table.
The estimated thresholds are similar to the GLS estimates reported by Christoffersson,
but there is greater discrepancy for some ~j between the OLS and GLS solutions. The
loadings in Table 5 also differ somewhat from other sets of least squares estimates
reported by Mooijaart (1983) and Muthrn (1978) for these variables. The differences 
due to their decision to fix hj at the sample values/~j = ¯ ~l(sjj), and solve only for
A j, while we have obtained all eight estimates simultaneously.

This structure is equivalent to the two parameter normal ogive item response
theory model (Takane & de Leeuw, 1987). The correspondence between the two 
described especially clearly in McDonald (1985). He also related both the factor anal-
ysis and IRT models to the class of nonlinear latent variable structures developed by
McDonald (1967). (We are grateful to an associate editor for bringing this matter to 
attention.) The equivalence of these three models is quite pleasing, as is the fact that
several specializations of them can be estimated with essentially the same computing
scheme. There are practical benefits as well. For example, with this data set there is a
six-fold improvement in computing efficiency for the factor analysis model estimated as
a nonlinear latent variable structure than when estimated directly.

Discussion

For many problems it is obviously more efficient to estimate a model with available
computer programs than to bother with a special algorithm. This is especially true for
popular models such as restricted factor analysis or latent variable regressions. On the
other hand, many interesting structures exist that cannot be estimated with existing
software, or that require a complicated parameterization to set up. A more general
method is preferable for them. This method may also be valuable when investigating
other issues related to structural equation modeling such as fit indices that require
elements of the Hessian matrix or other derivatives (e.g., Sfrbom, 1975).

Examples have been presented in some detail to illustrate that the procedure is
appropriate for realistic problems. Indirect versions of the first two models can be
estimated with popular computer programs, but it is often preferable to fit the models
directly, for then the actual model parameters, not functions of them, can be estimated,
and the appropriate standard errors are computed.



226 PSYCHOMETRIKA

TABLE 5

Data and Least Squares Estimates of Model (18).

Joint and Marginal Frequencies

1. 924

2. 664 709

3. 524 418 553

4. 710 553 445

5. 806 630 490

763

678 870

Least Squares Estimates

hj -1.408

ij 0.455

~j 0.793

-0.560 -0.128 -0.724 --1.147

0.310 0.605 0.304 0.213

0.904 0.634 0.908 0.955

Note: Data from Bock and Lieberman (1970), LSAT Section 6. N = 1,000

This procedure represents a basic framework for structural equation models. Its
simplicity is an asset. It can be generalized in several ways depending on requirements.
Including a facility for multiple populations is one obvious extension. Models with a
mean structure can be accommodated by augmenting the covariance matrix, as dis-
cussed, for example, by J6reskog (1981, sec. 5.1), or via a more explicit representation.
A larger class of distributions can be considered (Browne, 1984) by modifying the
discrepancy function that is at the heart of the procedure. A valuable enhancement is
to replace the basic step (3) by a comp|ete implementation of Jennrich and Sampson’s
(1966) stepwise least squares solution for the Gauss-Newton update vector. None 
these generalizations is difficult to incorporate into the basic scheme.

A referee requested some comparative information on the relative speed of this
procedure versus LISREL 7. Processing times for a few models are shown in Table 6.
Generally, LISREL is two to seven times faster than this procedure for models that
LISREL can estimate directly. For very large problems, such as complicated path
models or restricted factor analysis models that involve many variables, the perfor-
mance difference would be even greater. Considering the many features implemented in
LISREL, the relative advantage in computing time is all the more impressive. If speed
is the major consideration, one would certainly not use a more general method to
estimate one of LISREL’s sub-models. On the other hand, LISREL is about ten times
slower for the double autoregressive model (13).

More to the point, LISREL 7 cannot estimate model (7) except in an indirect way
that one may not be interested in obtaining, and it cannot handle constraints such as
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TABLE 6

Computing Time in Seconds for Selected Models

q LISREL 7 GN Model

227

1 8 11 63 6

2 6 16 1 2

3 9 22 2 12
4 12 30 7 37

Double Autoregressive Model
Stability of Alienation

Restricted Factor Analysis

2nd Order Factor Analysis

Note: GN denotes the general Gauss-Newton procedure. Computing time

is based on a 33MHz microcomputer. Model 1 corresponds to structure (13);

Models 2, 3, and 4 are described in JSreskog and SSrbom (1989, p. 204),

JSreskog and SSrbom (1989, p. 136), and Rindskopf and Rose (1988,

p. 63), respectively.

(15) in factor analysis models, or any version of model (18). Browne and Du Toit (1992)
discuss others that are outside the LISREL framework. The intention has not been to
minimize the value of popular programs, but to emphasize the advantages of more
general procedures for problems that cannot be estimated with standard software at all.
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Appendix

IML Implementation of Stability of Alienation Model

TITLEI ’GAUSS-NENTON NETHO0 FOR COVARIANCE STRUCTURE ANALYSIS’;
TITLE2 ~STABILITY OF ALIENATION NOOEL’;

PROC IML;

START

* .... INITIALIZATION ..................................................
NPAR = 16; * NUHBER OF PARARETERS;
N = 932; * SANPLE SIZE;
IUiXIT = 50; * I~XI~UI~ ITERATIONS;
TOL = 0.00001; * CONVERGENCE CRITERION;

* STARTING VALUES;

*-’" LONER TRIANGULAR PART OF SAMPLE CORRELATION NATRIX ............... *;
S = ( 11.834 0 0 0 0 O,

6.94? 9.364 0 0 0 O,
6.819 5.091 12.532 0 0 O,
4.783 5.028 ?.495 9.986 0 O,

"3.839 "3.889 "3.8~1 "3.625 9.610 O,
-21.899 "18o831 "21.748 "18.775 35.522 450.288 ) 

S = S + S~ " DIAG(S); * FILL IN UPPER SECTION OF MATRIX;

* ...... LABLES FOR VARIABLES AND PARAMETERS ........................... *;
LABELS = ( " AN6?" "PI7~67" " AN?l" "POI~67" " EO" "
PARLAB = ("LY 2,1" "LY 4,2" "LX 2,1" " BETA" " CAM 1" " GAM 2"

*"" ESTIMATION METHO0: 0 FOR ML, 1 FOR GLS ........................ *;
EST~ET = O;

* ROOEL: CONPUTE COVARIANCE MATRIX "SI~" AS A FU~C OF "PAR" *
* STABILITY OF ALIENATION t(X)EL *

START MI])EL

LX 1 // PAR(I31);
el = iNv ( c~ II o) // (PAR(141) II );

PH
PS =
TD
TE

01 =
SYY =
SYX =
SXX =

PAR(Irl);
I(2) # PAR(J8:91);
I(2) PAR(I10:111);
I(4) # PAR(I12:151);
TE(13,~I> = PAR(I~I); TE(II-,31) = PAR(I~61);

LY * 8I;
Q1 * (GA * PH * GA~ + PS) * Q1~ + TE;
01 * GA * PH * LX~;
LX * PH * LX~ ÷ TO;

* SIGMA;SIG = (SYY II sYx)//(sYx, sxx);
FINISH; * END OF HOOULE "HOOEL";
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RESET NOtiANE;
MNANE= (~ MLw w GLS~); NVAR = NRO~/(S); UV = J(NVAR,I,1);

*--- SANPLE COVARIANCE NATRIX NUST BE POSITIVE DEFINITE ...............
RUN INVCHK (SING,B,S,UV,ST);
IF SING : 0 THEN

INVS : B(II:NVAR,I:NVARI);
ELSE DO;

PRINT "SANPLE COVARIANCE NATRIX IS NOT POSITIVE DEFINITE";
GOTO STOP;

END;
TESTNET = ESTNET;

*--- TEST WHETHER ESTINATED COVARIANCE NATR~X IS SINGULAR ............. *;
RUN NOOEL (SIG~A,GA1);

IF(TESTNET : O) THEN RUN INVCHK (SING,B~SIGI(A,UV,ST);
IF SING : 0 THEN INVSIG : B(II:NVAR,I:NVARI);
IF (ESTNETISING) = 0 THEN TEST~ET : 

ELSE TESTNET : 1;
IF TESTNET = 1 THEN

F1 : 0.5 * TRACE((I(NVAR) - INVS * SIGNA)**2);
ELSE

F1 : LOG(DET(SIGNA)) + TRACE(S * INVSIG) " LOG(DET(S)) 

*--- PRINT SANPLE COVARIANCE NATRIX AND INITIAL PARANETER VALUES ......
PRINT "SANPLE COVARIANCE NATRIX",~

S(IRO~NANE=LABELS COLNA)IE=LABELS FORNAT--8.31);
DO J1 = I TO NPAR BY 10;

J2 = J1 + 9; IF J2 ¯ NPAR THEN J2 = NPAR;
A : GAI( Jl:J21)t;
PN PARLAB(IJI:J2 );
IF J1 : 1 THEN PRINT "INITIAL PARANETER ESTINATES",,

A(ICOLNANE=PN FOR~T:8.31);
ELSE PRINT A(ICOLNANE=PN FORNAT=8.31);

ENO;

*==: NAJOR ITERATION LOOP BEGINS HERE ===================================
FUNVALS : F1; NAXGR : O; FUNDIF : O; ITS : O; NSNG : O;
ESTVEC = NNANE(I1,TESTNET÷ll);
DO K : 1 TO NAXIT;

IF TESTNET = 1 THEN
RUN APDER(GRAD,HESS,S,SIGNA, INVS,GA1,NPAR);

ELSE
RUN APOER(GRAD,HESS~S,SIG~A, INVSIG~GAI~NPAR);

*"" UPDATE ESTINATES .................................................
RUN INVCNK (SINGO,B,HESS,GRAD,STAT);
INVHESS = B(II:NPAR,I:NPARI);
GA2 = ¢J,1 - B(II:NPAR,NPAR+ll);
RUN I¢:X)EL (SiG~A,GAZ);

*--- CHECK THAT SIGNA IS POSITIVE DEFZNITE ............................ *;
IF(TESTNET = O) THEN RUN INVCHK (SING,B,SIQqA,UV,ST);
IF SING = 0 THEN INVSIG = B(II:NVAR,I:NVARI);
IF (ESTNETISING) = 0 THEN TESTNET = 

ELSE TESTNET : 1;
IF TESTNET = 1 THEN

F2 : 0.5 * TRACE((I(NVAR) " INVS 
ELSE

F2 = LOG(DET(SIGI4A)) + TRACE(S * INVSIG) " LOG(PET(S)) 
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*--- RECORD ITERATION HISTORY ......................................... *;
ITS : ITS // K; * ITERATION NL~4BERS;
ESTVEC : ESTVEC // NNANE(~I,TESTNET+ll); * ESTINATION NETHO0;
FUNVALS : FUNVALS // F2; * FUNCTION VALUE;
FUNDIF = FUNDIF // (F1 - F2)$ * FUNCTION DIFFERENCES;
G/qAX : MAX(ASS(GRAD)); * NAX GRADIENT=
NAXGR : NAXGR // G~AX;
NSNG : NSNG // SINGO; * SING. PARANETERS=

*--- CHECK FOR CONVERGENCE, UPOATE PARA~IETERS AND GO AGAIN ............
IF(~ < TOL) THEN GOTO RESULTS;

ELSE DO;
F1 : F2;
GA1 = GA2;
END;

END;
*::: END OF ITERATION LOOP ==============================================

*--- ALL DONE. PRINT RESULTS .........................................
IF K > NAXIT THEN PRINT "NAXINUN NUNBER OF ITERATIONS WAS REACHED";

RESULTS:
RESID : SIGMA - S;
CHISQ : (N - 1) * F2;
DF : NVAR = (NVAR + 1) * 0.5 - NPAR;
P = 1 - PRONCHI(CHISQ,DF);
INFONAT: (2 / (N - 1)) = INVHESS;

SE : SQRT (VECDIAG (INFONAT));

* RESIDUAL NATRIX;
= TEST STATISTIC;
* DEGREES OF FREEDOM;
* PROI]ABILITY;
* INFORNATION NATRIX;
* STANDARD ERRORS;

PRINT / "ITERATION HISTORY",,
ITS (ICOLNANE=’ITER’ FORNAT-=~.Ol)
ESTVEC (ICOLNANE=’NETHOO’ FORNAT=$CHAR6.I)
FUNVALS(ICOLNANE=’FUNCTION’FORNAT=IO.61)
FUNDIF (ICOLNANE=’DELTA(F)’ FORNAT=12.81)
NAXGR (ICOLNANE=’NAX(GRDNT)’ FORNAT=I2.TJ)
NSNG (ICOLNANE=~H SING PAR~ FORNAT:12.0]);

S1 = {" NODEL NAY NO BE IDENTIFIED",
" (STAT FLAG = 0 INDICATES PARANETER IS SINGULAR)");

~ = <GA2 II SE II (STAT<II:NPARI>=O))’;
CN : ~"ESTINATES" "STD ERR*S" "STATUS"};

DO J1 : 1 TO NPAR BY 10;
J2 : J1 + 9; IF J2 ¯ NPAR THEN J2 = NPAR;
A = G(il:3,Jl:J2i);
PN : PARLAB(IJI:J2]);
IF J1 : 1 THEN

PRINT "FINAL PARANETER ESTINATES AND STANDARD ERRORS",,
A(ICOLNANE=PN RO~IAt4E=CN FORNAT=8.31);

ELSE PRINT A(iCOLNANE=PN RO~NAHE=CN FORNAT=8.3]);
END;

IF SUN(STAT(II:NPARI)) ¯ 0 THEN PRINT 
PRINT "ESTINATED COVARIANCE NATRIX",,

SIGqA (IROUNANE=LABELS COLNANE=LAEELS FORNAT=IO.31);
PRINT / "RESIDUAL COVARIANCE NATRIX",,

RESID (IROUNANE:LABELS COLNANE:LABELS FORNAT:IO.31);
PRINT " LIKELIHOO0 RATIO TEST STATISTIC",,

CHISQ ( ICOLRAIqE="CH!-SQARE" FORNAT=IO.3~ 
OF ( I COLNMIE:"D F" FORNAT:$. 01 )
P ( ~ COLNA~tE:"PROB" FORNAT=8.31 ) 
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* APOER: GRADIENT AND APPROX|MATE HESSIAN *

START APDER (G,H,SANCOV,SIG,Q1,PAR,NUI~PAR);
S#ALL : 0.0000001; V2 : PAR;
G : J(NU~PAR,I,0); H : J(NU~PAR,NUMPAR,O);
Q2 : Q1 * (SIG - SANCOV);

*--- ELEMENTS OF GRADIENT .............................................
DO I = 1 TO NUMPAR;

v2<11,11) : PAN(II,ll) S.ALL;
RUN I~OEL (SHeV2);

= (SH " SIG) S~4ALL;

G(li,1I) = TRACE (Q2 * (13);

*--- ELEMENTS OF HESSIAN ..............................................
v2(lll) = PAR(III);
DO J : 1 TO l;

v2tlJI) : PAR(IJI) ÷ S~LL;RUN .(X)Et
: (SH - SIG) SMALL;

H(IJ,i I) = TRACE (Q3
v2(IJI) :PAR(IJI);

END;
END;
H : H + Ht - DIAG (H);

FINISH; * END OF APDER M~OULE;

* INVCHK: DETERMINE IF A MATRIX IS POSITIVE DEFINITE.
iF YES, RETURN THE INVERSE

START I.VC.K (SIH~,C,A1,A2,STAT);
A = (A: II A2> // (A2’ 
C = SWEEP (A,I:NROW(A1));
STAT = (C( e+ ) = 
SiNG STAT(

FINISH; * END OF iNVCHK PROGRAN;

STOP: FINISH; * END OF PROGRAM;

RUN GN;
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