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Robust Structural Equation Models: 

Implications for Developmental Psychology 

George J. Huba 
Western Psychological Services 

Lisa L. Harlow 

University of Rhode Island 

HUBA, GEORGE J., and HARLOW, LISA L. Robust Structural Equation Models: Implications for 
Developmental Psychology. CHILD DEVELOPMENT, 1987, 58, 147-166. Advances in structural equa- 
tion modeling techniques have made it possible to test models in data that are not normally distrib- 
uted. This can lead to more realistic model testing in developmental psychology. Several alternate 
techniques are illustrated in structural equation models here in order to compare the results that are 
obtained. Maximum-likelihood and generalized least-squares estimators for normally distributed 
data are compared with Browne's asymptotically distribution-free technique for continuous nonnor- 
mally distributed data and Muthen's estimator for dichotomous indicators. While different critical 
ratios are found for some parameters estimated in models, the results are generally comparable so 
long as one does not consider absolute fit to be a critical factor in "accepting" a causal model as a 
good one. 

A major revolution in the study of impor- 
tant psychological phenomena as they de- 
velop during the lifespan has been the recent 
advances in analytical and statistical tech- 
niques for modeling the covariation of major 
constructs in the areas of behavior, personal- 
ity, attitudes, and environmental characteris- 
tics. This article examines some real struc- 
tural equation models to illustrate some major 
points in the estimation of the parameters in 
these models. The central methodological 
question asks what types of statistical tech- 
niques should be used when it is suspected 
that the data available for testing models may 
not have textbook normal distributions. Can 
causal or structural equation modeling be 
done with nonnormal data, and are alternate 
methods for nonnormal data superior with 
the typical datasets and theoretical models 
tested? 

From the standpoint of the applied de- 
velopmental psychologist, structural equation 
models have several important advantages to 
recommend them. First, structural equation 
models permit one to unambiguously develop 
models to represent an important theoretical 
framework. Second, the structural equation 

models can study the influence of one "error- 
free" construct on another "error-free" con- 
struct so long as the constructs are measured 
with multiple indicators or variables. A sim- 
ple algebraic demonstration is given by Huba 
and Bentler (1982a) that using true scores to 
assess theories yields more accurate estimates 
of causal influence than using total (observed) 
scores. Thus, structural equation models with 
latent variables can permit us to eliminate the 
potentially confounding influences of mea- 
surement error in the observed variables. 
Third, if the data are longitudinal or have 
other major aspects of "quasi-experimenta- 
tion" designed to control confounding influ- 
ences, it may be possible to draw some con- 
clusions about causality in phenomena that 
cannot be ethically studied through ex- 
perimentation. Fourth, even if the data are 
not sufficiently strong to permit causal infer- 
ence, it is possible to compare and contrast 
the relative fit of the model to the data using 
several alternate theoretical frameworks. 

Having clearly specified a model, com- 
puter programs are available that can simulta- 
neously analyze the various patterns of inter- 
relations implied by the major equations in 

The authors are indebted to Drs. Michael W. Browne and Bengt Muthen for the use of their 
computer programs for structural equation modeling. Three anonymous reviewers made detailed 
comments that were extremely useful in developing the final draft of the paper. Any remaining 
errors are, of course, those of the authors. The ideas expressed here are those of the authors and may 
not reflect official policy of Western Psychological Services (WPS). Address correspondence to G. J. 
Huba, Western Psychological Services, 12031 Wilshire Boulevard, Los Angeles, CA 90025. 
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148 Child Development 

the system. Under assumptions of multi- 
variate normality among the observed vari- 
ables, parameter estimates for a model are 
generally obtained via a maximum-likelihood 
estimation procedure that yields both a large- 
sample chi-square test and asymptotic stan- 
dard errors of estimates. The parameters esti- 
mated include variances and covariances for 
both the latent variables as well as distur- 
bances in the latent constructs. Widely avail- 
able computer programs for this procedure in- 
clude LISREL VI (J6reskog & S6rbom, 1984), 
EQS (Bentler, 1987, in this issue), and COSAN 
(McDonald, 1980), and it would be a fair char- 
acterization to say that maximum-likelihood 
(ML) estimation currently dominates in the 
scientific marketplace for structural equation 
modeling specifically because of the histor- 
ical importance of the widely circulated 
LISREL program and well-known asymptotic 
(large-sample) efficiency properties of ML es- 
timation in general. Nonetheless, newer esti- 
mation methods exist that permit the data to 
be distributed in ways other than with mul- 
tivariate normality, and these alternatives may 
rate as the most important developments in 
structural equation modeling since the origi- 
nal systematization by J6reskog and S6rbom. 

In the discussion that follows, we have 
deliberately not introduced the fundamental 
equations for some alternate estimators. A far 
more complete and technical introduction to 
these issues is provided by Huba and Harlow 
(1986), who also give the major equations and 
technical citations. 

Potential Problems with Structural 
Equation Models as Presently Used 

Despite the valuable contribution of the 
latent-variable causal modeling techniques 
with maximum-likelihood estimators to re- 
search methodology, several problems can 
arise during implementation. The first prob- 
lem concerns the distribution of the variables. 
Virtually all applications wishing to employ a 
statistical estimator so that goodness of fit can 
be assessed utilize maximum-likelihood esti- 
mation, which is based on the assumption that 
the observed variables follow a multivariate 
normal distribution. While the efficiency of 
this statistical estimation procedure has been 
studied (e.g., Browne, 1968; Joreskog, 1967) 
and several investigators have suggested ro- 
bustness for the maximum-likelihood estima- 
tions against violations of normality (e.g., Ful- 
ler & Hemmerle, 1966; Huba & Bentler, 
1983a; Joreskog & Sdrbom, 1984), the validity 
of the chi-square test statistics and the stan- 
dard errors may still be suspect with nonnor- 

mal data since a fundamental mathematical 
assumption is violated (Browne, 1982, 1984). 
As an alternative, one could utilize estimation 
procedures that do not require such a restric- 
tive and perhaps unrealistic assumption. 

Browne (1982, 1984; Browne & Cudeck, 
1983) discuss a class of distributions that per- 
mit use of best generalized least-squares es- 
timators even when the variables exhibit ex- 
cessive kurtosis ("peakedness") or insufficient 
kurtosis ("flatness") when compared to the 
multivariate normal distribution. While social 
scientists often seem to worry about the 
skewness in their data, Browne points out that 
in fact it is the kurtosis that is critical since it 
is a term in the mathematical expression for 
the covariances of the covariances. That is, 
when the data are not normally distributed, 
we must know about the variable kurtoses as 
well as the variable means and covariances in 
order to infer facts about individual patterns 
of scores. Browne introduces an asymptoti- 
cally distribution-free (ADF) method for ob- 
taining parameter estimates, standard errors, 
and a fit statistic. This ADF estimate has been 
successfully applied to many different causal 
models with nonnormal data typical of those 
encountered in developmental psychology 
(Huba & Bentler, 1983b; Huba & Harlow, 
1983, 1986; Huba & Tanaka, 1983). Browne 
implements his estimator within a framework 
that can be considered, from the standpoint of 
the user, as identical to that of Joreskog and 
Sarbom. Thus, the Browne estimator is one 
that is applicable to continuous variables that 
do not appear to be normally distributed. 

It might be noted that for data that are 
assumed to have no extra kurtosis over that of 
a normal distribution, the Browne ADF es- 
timator is asymptotically equivalent to one 
called the generalized least-squares estimator 
(Browne, 1974; Joreskog & Goldberger, 1972; 
J6reskog & Sdrbom, 1984). The generalized 
least-squares estimator (or GLS) for normally 
distributed variables was initially developed 
to provide a potentially less expensive (in 
computer time) way of estimating the parame- 
ters in causal models when the data were nor- 
mally distributed or have multivariate kur- 
toses equivalent to that expected from a 
normal distribution. 

A common application of Browne's ADF 
estimator occurs in longitudinal studies 
where it is observed that personality or in- 
tellectual functioning variables with "bell- 
shaped" distributions at some ages are not 
"bell-shaped" during adolescence or late in 
the lifespan. Alternately, interesting deviant 
(i.e., infrequent) behaviors like criminal activ- 

This content downloaded from 129.59.95.115 on Wed, 26 Feb 2014 10:01:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Huba and Harlow 149 

ity, alcohol consumption, or days of illness 
may not have normal distributions at any time 
in the lifespan. While monotonic transforma- 
tions can usually be applied to nonnormal 
data to ensure marginal, but not multivariate, 
normality, transformations of this type are not 
appropriate in longitudinal studies if the 
shape of a distribution changes with age. Ap- 
plying different normalizing transformations 
to the same variable at different times would 
destroy the repeated measurement aspects of 
the study. 

A second problem area in causal or struc- 
tural equation modeling concerns the mea- 
surement level of the variables. Procedures 
utilizing variances, covariances, and product- 
moment correlations all make the implicit as- 
sumption that indicators are at least measured 
on an interval scale. This is often not feasible 
or is at least difficult to ensure with social 
data. Frequently the data are dichotomous or 
at best ordinal in scale, and the use of such 
measures as the product-moment correlation 
becomes problematical (Carroll, 1961). For 
instance, the variables in a model may be a 
series of dichotomous indicators of whether or 
not an illness has occurred. Or they may be a 
set of stressful events that have or have not 
happened. 

A structural equation procedure capable 
of handling these noninterval response scale 
data sets has been developed by Muthen 
(1978, 1981, 1982a, 1982b, 1983; Muthen, 
Huba, & Short, 1985; Muthen & Kaplan, 
1985). In his computer program, LISCOMP, 
Muthen uses a limited-information general- 
ized least-squares estimator for dichotomous 
and polytomous categorical causal models. 

Muthen's procedures again look to the 
user like LISREL. However, while Muthen's 
observed variables are assumed to be di- 
chotomies or ordered categories, he assumes 
that for each observed variable there is a cor- 
responding unobserved and normally distrib- 
uted latent indicator. If the level on this un- 
observed latent variable is over some 
threshold value, then a response of "yes" or 
"category a" is observed, while a response 
below this threshold is observed as a "no" or 
"category b." Muthen's causal models con- 
nect these corresponding (to observed vari- 
ables) underlying normally distributed latent 
variables in ways analogous to LISREL models. 

It is critical to recognize that in Muthen's 
method, while we model the responses in 
the presumed latent or unobserved normally 
distributed variables, we can only observe 
dichotomous or ordered-categorical indica- 

tors of them. That is, underlying each di- 
chotomous or categorical response is a pre- 
sumed normally distributed variable that is 
dichotomized by our powers to detect it be- 
yond some threshold. If we make this as- 
sumption, then we can obtain statistical esti- 
mates for the parameters and use statistical 
testing methods paralleling those used cur- 
rently in LISREL. Such a statistical model 
seems especially appropriate when we as- 
sume that an underlying normally distributed 
latent proclivity, for example toward crimi- 
nality, "causes" the performance of specific 
behaviors such as crimes in this example. 

Muthen's approach should be contrasted 
to the approach for categorical variables em- 
ployed by Joreskog and Sorbom, which is 
only approximate and does not necessarily 
lead to a numerically proper test statistic. 
Joreskog and Sorbom calculate tetrachoric 
correlations for the case of dichotomous vari- 
ables or polychoric correlations for the case of 
polytomous variables. They then use this ma- 
trix as input to a "regular" statistical estima- 
tion of the parameters. The user may specify 
either maximum-likelihood estimators or ordi- 
nary least-squares estimates. Muthen, on the 
other hand, uses a "best" weight matrix for 
the population tetrachoric or polychoric corre- 
lations. Muthen's technique is a proper statis- 
tical one supported by appropriate statistical 
theory (e.g., Muthen, 1984), while J6reskog 
and Sorbom's technique is an approximate 
one using robust correlation estimates. Their 
procedure does not ensure that there are 
proper standard errors and a correct global 
significance test. As an approximate tech- 
nique, Joreskog and S6rbom's method may 
yield better numbers than incorrectly apply- 
ing quantitative, normal-data techniques, 
but its only major advantage over Muthen's 
related technique might be significantly 
cheaper cost. In practice, however, such an 
advantage has not been observed in several 
problems. 

An Empirical Comparison of the 
Approaches with Quantitative 
Variables 

It is illuminating to compare the results 
that might be obtained with the different 
ways of calculating structural equation model 
parameters in a real data set. Specifically, the 
following techniques are compared: max- 
imum-likelihood (ML) estimators, general- 
ized least-squares (GLS) estimators, and 
asymptotically distribution-free (ADF) es- 
timators for continuous data, and Muthen's 
dichotomous variable (DV) technique for 
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qualitative variables. After transforming the 
data into dichotomous indicators, tetrachoric 
correlations were calculated and used as in- 
put to both ML and ULS (unweighted or ordi- 
nary least-squares) estimation called TETRA- 
ML and TETRA-ULS here. Finally, after 
transforming the data into indicators with four 
or five categories, polychoric correlations 
were calculated and input into both ML and 
ULS estimation (POLY-ML and POLY-ULS). 
The ML and GLS methods are appropriate for 
normally distributed continuous variables, 
while the ADF estimator is appropriate for 
nonnormally distributed continuous vari- 
ables. The ULS method does not have any 
distributional assumptions and also does not 
provide standard errors or a fit statistic. The 
DV method is appropriate for dichotomous (or 
categorical) variables, while the TETRA-(ML 
or ULS) and POLY-(ML or ULS) methods are 
approximate ones appropriate when the data 
have, respectively, two or more than two cate- 
gories. The ML, GLS, and ADF estimates 
were obtained in LISREL-V (Joreskog & Sor- 
bom, 1981). The program EQS (Bentler, 1985, 
1987) can also provide ADF, ML, and GLS 
estimates and several other alternatives. The 
DV estimates were obtained in Muthen's 
(1982b) program LACCI. Polychoric and tet- 
rachoric correlations and POLY-(ML and 
ULS) and TETRA-(ML and ULS) estimates 
were obtained in LISREL-V. It might be noted 
that the examples given here were developed 
before Muthen's (1986) LISCOMP computer 
program became generally available. LISCOMP 

will allow the user to do causal modeling on 
polychoric correlations, thus using the full 
number of categories in the original data. 

It should be noted that in order to ade- 
quately compare the estimates from the vari- 
ous methods, the data for each of the exam- 
ples were standardized, yielding correlation 
coefficients instead of covariances. This was 
necessary as two programs only allow cor- 
relations (LACCI and POLY and TETRA in 
LISREL). Huba and Harlow (1986) discuss why 
this is not a problem for the particular exam- 
ples presented here. 

The first example is a structural equation 
model that relates six personality variables to 
four drug and alcohol variables through four 
latent constructs. The data were obtained 
from a sample of 257 students at Rutgers Uni- 
versity by Drs. R. Pandina, E. Labouvie, and 
D. Lester. The six personality variables in- 
cluded: Law Abidance, Liberalism, Religious 
Commitment, Self-Acceptance, Invulnerabil- 
ity, and Depression. The four drug and al- 
cohol variables included: Frequency of Beer 
consumption, Quantity of Marijuana use on a 
typical day, Frequency of Marijuana use, and 
Quantity of Marijuana use on a typical day. 
These variables were conceptualized as indi- 
cators of the latent constructs Law Abidance, 
Self-Acceptance, Beer Consumption, and 
Marijuana Use. This four-factor model is de- 
picted in Figure 1, where the parameters to 
be estimated are indicated by Greek letters. 
In their raw forms (as originally measured), 

Law 

Abidance 
3 

Beer 

02 LbeeBeer 

Az Frequency7 

021 iberalism Abidance Consumption 

8 

A3 
Beer 

8 
Religious 2 Quantity 

3 Commitment 

64 Acceptance 
Marijuana 

Ag Frequency 

S Invulner- A5 Self 4 Marijuana 5 ability Acceptance Use 

A6A10 
6S u u m on d r ari 

juables- 06-w- Depression 2 4 
Quantity 

FIG. 1.-Structural equation model for 10 personality and drug variables 
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the 10 variables had skewnesses and kurtoses 
of -.20, -.27; -.68, -.59; -.28, -.56; 
- .44, - .23; - .16, - .12; - .47, - .15; - .01, 
- 1.14; .14, - 1.16; .86, -.57; and .71, -.13, 
respectively. Liberalism was significantly too 
peaked, while the distributions for Beer Fre- 
quency and Beer Quantity were significantly 
too flat. The multivariate kurtosis coefficient 
is 4.81, which is statistically different from the 
value obtained for multivariate normal data. It 
should also be noted that this model was pa- 
rameterized with the error variance (04,4) for 
Self-Acceptance set to zero because of previ- 
ous model results with this variable (Huba & 
Bender, in press). 

In this example, the number of response 
categories for each variable was relatively 
large (i.e., between 8 and 17). Thus, for the 
ML, GLS, and ADF solutions, the variables 
could be thought of as at least approximately 
continuous. In order to use the other three 
estimators (i.e., DV, POLY- and TETRA-ML, 
POLY- and TETRA-ULS), it was necessary to 
form discrete variables each having two or 
four response categories. To facilitate more 
interesting comparisons, two different proce- 
dures were utilized to transform the data. In 
the first the variables were arbitrarily split 
into fewer response variables by system- 
atically dividing the range into equal seg- 
ments, often resulting in rather uneven dis- 
tributions. For instance, the variable Law 
Abidance was arbitrarily reduced from 16 to 4 
response categories for the polychoric case. 
This results in a distribution with the follow- 
ing percentages in the four response catego- 
ries: 9%, 31%, 44%, and 16%. 

In the second procedure, the variables 
were split to form approximately normal dis- 
tributions. Thus, in the four-way split, vari- 
ables had about 25% of the responses in each 
of the response categories, while the two-way 
split resulted in approximately 50% of the 
cases in each of the response categories. Prod- 
uct-moment, tetrachoric, and polychoric 
correlations for this example are given in 
Table 1. 

The 10-variable drug and personality ex- 
ample was analyzed using the six different 
methods (i.e., ML, GLS, ADF, DV, POLY- 
and TETRA-ML and -ULS). However, when 
conducting the analyses, it was not possible to 
obtain a converged solution for the TETRA- 
ML technique with the uniformly split data. 
Thus, this column is omitted from the Table. 
The remaining estimates are presented in 
Table 2 along with a brief description of each 
parameter. As can be seen, the estimates are 
all rather comparable, with the exception of 

those from the TETRA-ML case with the ar- 
bitrary split. 

One major lack of comparability that 
might be explored is the fact that the causal 
regression coefficients 32 and P5 for the ADF 
solution are discrepant from the ML and GLS 
results. The large standard errors and position 
of the parameters within the model suggest 
that under the ADF estimator the two param- 
eters may be so highly correlated as to be ef- 
fectively collinear. That is, are the estimates 
of the causal effects called 32 and 35 redun- 
dant with one another, which is what would 
be suggested if the parameter estimates were 
correlated at a level close to 1.0? In fact, this 
is the case, since it was found that p2 and P5 
had a correlation of .99 in the ADF solution 
but only .71 in the ML one. Of course, the 
smaller correlation of .71 under the ML esti- 
mation is found with an incorrect assumption 
about the distribution of the variables. Appar- 
ently the elimination of distribution effects 
served to make some of the parameters in the 
model redundant. 

A typical fix in models with collinear pa- 
rameters is to eliminate one of the parame- 
ters. Theoretically, here it made sense to set 
the path (35) from Beer Use to Marijuana Use 
at zero. This alternate model was then rees- 
timated with all methods, and the resultant 
parameters and their standard errors are 
shown in Table 3. Again, with this model it 
was not possible to obtain a converged solu- 
tion form the TETRA-ML technique either 
with the arbitrary or uniform split data. 
Hence, estimates are presented only for 11 
methods. Notice that the parameter estimates 
are relatively stable in all instances across the 
ML, GLS, ADF, DV, and ULS methods. It 
should especially be noted that the parame- 
ters representing the causal influences of one 
latent variable upon another (I1, P2, 33, and 

34) now seem to be more comparable across 
methods. In addition, while the deletion of 
the parameter had a negligible effect on the 
global chi-square fit statistic for the ADF so- 
lution, it did have an appreciable (significant) 
effect on chi-square for the ML and GLS solu- 
tions. Thus, using the ADF estimator we may 
accept a "simpler" solution for the observed 
data. In this first example, then, the different 
estimators yield fairly comparable results, 
although we might want to place somewhat 
greater reliance on the parameter estimates 
derived from the ADF solution. 

A Second Example Comparing the 
Approaches 

A second example is a structural equa- 
tion model in which data from 601 individuals 
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158 Child Development 

in the UCLA Study of Adolescent Growth 
(Huba & Bentler, 1982b, in press) are used. 
For this example there were three indicators 
of a latent variable of Law Abidance measured 
in Year I of the longitudinal study with two 
cannabis use (marijuana, hashish) indicators 
in Year I, one cannabis use indicator in Year 
II, two cannabis use indicators in Year IV, 
and three cannabis use indicators (marijuana 
frequency, marijuana quantity, hashish fre- 
quency) in Year V. 

A diagrammatic representation of the 
model is given in Figure 2, which shows how 
the latent variable of Law Abidance in Year I 
relates to the sequence of Cannabis Use over 
the 5-year period of the study. Of the 11 vari- 
ables used in the analysis, five have seem- 
ingly nonnormal distributions with high lev- 
els of kurtosis and skew, while the remaining 
variables have kurtosis levels indicative 
either of normal distributions or distributions 
that are too flat. The multivariate kurtosis is 
117.24, which is highly significant. 

Parameter estimates were obtained for 
the model under the ML, GLS, and ADF 
techniques. Furthermore, to obtain tetra- 
choric correlations, the drug use variables 
were dichotomized as "ever" versus "never," 

while the three indicators of Law Abidance 
were dichotomized at the mean. For the 
polychoric correlations, the drug use variables 
were retained in five categories, while the 
Law Abidance indicators were split so that 
there would be approximately even distribu- 
tions among the five categories. Parameter es- 
timates, standard errors, and goodness of fit 
are given in Table 4. 

While the model does not fit the data 
under ML and GLS estimation (assuming 
normally distributed variables), it does fit 
when the data are analyzed in ADF or 
Muthen's DV method. Nonetheless, notice 
that the parameter estimates for the ML and 
GLS technique are about the same as those 
for the ADF estimator. 

While the interpretation of the model is 
not a major point of the article, a few major 
conclusions might be noted. Examining the 
factor loadings, there is general agreement 
among methods that the indicators assess the 
factors as hypothesized. Examining the struc- 
tural regression coefficients (parameters pi 
through 07), it can be seen that ADF, GLS, 
and ML all agree on about the same value, 
and that in all cases the critical ratio test (di- 
viding the parameter estimate by its standard 
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162 Child Development 

error) indicates the same decision about 
whether the parameter is significant or not. 
However, the DV method of Muthen tends 
to yield substantially different conclusions 
about the paths from Law Abidance I to Can- 
nabis Use II, IV, and V, with the DV method 
indicating that the paths are not significant 
while all other methods do suggest that the 
paths are significant. In this case, dichotomi- 
zation of the variables may throw away so 
much information that these significant ef- 
fects cannot be detected. Similar values are 
found for all of the error and residual vari- 
ances. In the approximate TETRA-ML and 
TETRA-ULS methods, a negative error vari- 
ance is again found. 

Robust versus Resistant Modeling 
Techniques 

The procedures that have been discussed 
thus far are new, revolutionary statistical es- 
timators that are robust over violations of the 
assumption of multivariate normality. That is, 
the Browne ADF estimator can, with suf- 
ficiently large samples, be expected to per- 
form reasonably well when the data are not 
normally distributed but are continuous. As- 
suming certain facts about the underlying la- 
tent distributions, Muthen's procedures are 
robust over problems that are caused by the 
observed data being dichotomous or mea- 
sured in ordered categories. 

Frequently the word "robust" is used by 
applied data analysis workers to refer also to 
the fact that ideally we would like a statistical 
procedure to be relatively unaffected by a 
gross pathology in the data like a miscoded 
subject or an outlier case, or we would like 
most of the parameters estimated in a model 
to have values that are minimally affected by 
some local areas of misspecification, such as 
neglecting to include a necessary parameter. 
Such techniques are called resistant ones 
here. Basically a resistant technique is one 
that should not be unduly affected by one or a 
few "bad" observations, or poor specification 
in some small part of the model. 

Thus far there has been relatively little 
work on resistant estimation for structural 
equation modeling parameters, although the 
techniques are relatively well known in other 
areas of statistics and, most notably, in the re- 
lated area of multiple linear regression (see 
Mosteller & Tukey, 1977). The exception to 
this rule has been some pioneering work 
by Browne (1982) that applies resistant 
techniques to structural equation modeling 
methods. 

In resistant modeling, two different ap- 
proaches might be contrasted. In the first ap- 
proach, we would estimate a set of causal 
modeling parameters on the data as they oc- 
cur in the data file, but we would somehow 
weight the observations differentially when 
we were actually minimizing some function 
so that the parameters would be based on fit 
to data where each observation did not count 
equally. That is, data that were relatively dif- 
ferent from the other data would not count 
as heavily. Thus, outlier subjects would be 
counted less, or not at all, and accordingly it 
would be expected that the parameter esti- 
mates obtained in such a procedure would be 
reasonably stable against data anomalies such 
as a mispunched record, or a client who delib- 
erately sabotaged responses to a question- 
naire. In such an approach, the major issue 
is whether to develop the weights from dis- 
crepancies between observed and repro- 
duced covariance matrices or between ob- 
served and reproduced raw data and what 
weighting scheme to use. Browne (1982) 
adopts this general approach to resistant 
fitting in causal modeling by basing his 
weighting scheme on the bisquare procedure 
of Mosteller and Tukey (1977). Browne de- 
rives his weights from the discrepancies be- 
tween observed and reproduced covariance 
matrix elements. This is the most computa- 
tionally effective technique. In the Browne 
resistant fitting procedure. there will be a 
tendency to fit most of the elements in the 
covariance matrix very well but to leave a few 
very large discrepancies that would tend to 
be attributed either to gross data pathologies 
or bad specifications of the theoretical model. 

A second approach to resistant fitting 
might be to argue that since structural equa- 
tion modeling techniques are methods for de- 
termining whether a model adequately de- 
scribes a covariance matrix, one might use 
some weighting scheme to develop a resistant 
covariance matrix estimate and then use this 
robust covariance matrix as the input to a 
"regular" structural equation modeling pro- 
cedure. Again, any number of weighting 
schemes might be used here (see, e.g., Huber, 
1981). The first author has experimented ex- 
tensively with the estimation of a resistant 
covariance matrix using the Mosteller-Tukey 
bisquare weight scheme (see Huba & Bent- 
ler, in press) and found that in general very 
similar results are found for structural regres- 
sions based on either the "regular" or the "re- 
sistant" covariance matrix in some data sets 
that had been carefully cleaned of errant 
observations. Joreskog and Sorbom (1984) 
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discuss a similar, although computationally 
slightly different, approach. 

It might be noted that Tanaka (1987, in 
this issue) discusses some resistant fitting 
methods that are especially applicable for 
small data sets. Tanaka's recommended pro- 
cedures are most like the notion of devel- 
oping a resistant estimate of the covariance 
matrix where "extra" correlation due to the 
small sample size has been reduced through 
statistical manipulation. 

In theory, both of these resistant estima- 
tion techniques should yield generally com- 
parable results, although an "outlier" obser- 
vation would tend to be identified as an 
"outlier covariance-producing element" in 
the first case and as a "pairwise outlier" in the 
second case. It is not known in practice if 
there are differences between the two proce- 
dures when the data are dirty to different de- 
grees. 

Resistant structural equation modeling 
techniques are especially useful when large 
and potentially "dirty" data sets are to be 
used in a causal modeling example. In such 
cases, a few aberrant observations could po- 
tentially bias the results whether or not a ro- 
bust modeling technique such as ADF is 
used. In general, it seems unreasonable to ex- 
pect that statistically based methods for non- 
normal data would be strongly effective 
against gross abnormalities such as would be 
caused by bad outlier cases. However, in gen- 
eral, we will want to get the best statistical 
estimates possible, so a robust method may be 
preferable over a (nonstatistical) resistant 
technique. 

It is the position of the authors that resis- 
tant techniques for causal modeling parame- 
ter estimation need to be studied in much 
greater detail. Nonetheless, it may be that the 
major use of resistant fitting procedures will 
be to verify that the same results can be ob- 
tained as have been gotten using a "regular" 
robust method such as ADF. That is, if we 
can run the data through both ADF (or ML or 
GLS) estimation and find almost exactly the 
same parameter estimates as we do when we 
run the data through a resistant fitting method 
such as Browne's (1982) bisquare weighting 
scheme, then we probably would want to give 
great credence to claims of validity for the 
statistical estimator in the data set. On the 
other hand, if the resistant estimates of param- 
eters depart greatly from those obtained in 
the statistical methods of ML, GLS, or ADF, 
then we might want to carefully examine the 
raw data set and eliminate "bad" data points 

that can be identified as the result of data mis- 
coding or poor keying of the data. That is, the 
comparison of the results from robust and 
resistant parameter estimation techniques 
in causal modeling may serve to indicate 
whether or not a data set should be cleaned 
carefully again or not. Unfortunately, various 
resistant estimators for causal modeling pa- 
rameters and correlations/covariances are not 
generally available in widely circulated com- 
puter programs for structural equations mod- 
eling. 

Fit Coefficients for Robust and 
Resistant Modeling Methods 

As noted by Tanaka and Huba (1985), it 
has frequently been argued that statistical in- 
dices of the fit of structural equation models 
to data tend to emphasize that not all of the 
covariation has been explained as opposed to 
how much covariation is accounted for. Sev- 
eral alternate types of fit coefficients, or corre- 
lation-like indices of amount of variance ac- 
counted for, have been proposed for causal 
models. Of these, the general coefficient 
discussed by Tanaka and Huba (1985) as 
modified from work by J6reskog and Sorbom 
(1981) seems to be the most applicable to the 
robust structural equation modeling tech- 
niques that are discussed here. The general- 
ized "goodness of fit" or GFI index seems 
most appropriate for two reasons. First, 
Tanaka and Huba (1985) show that a general 
form of the GFI index can be demonstrated to 
have an optimal value when the causal mod- 
eling fit functions reach their minimum. That 
is, causal modeling techniques that minimize 
chi-square or chi-square-like coefficients will 
maximize GFI coefficients. Second, from this 
general result, Tanaka and Huba were able to 
show that specific coefficients for maximum- 
likelihood, generalized least-squares, asymp- 
totically distribution-free, and unweighted 
least-squares estimation can be derived. 
Thus, the general coefficient is appropriate 
for these different estimators, and about the 
same metric for the coefficient applies irre- 
spective of the method of parameter estima- 
tion. That is, GFI coefficients obtained from 
different methods of parameter estimation can 
be compared to one another. 

Discussion 

A very old criticism in latent-variable 
causal modeling or structural equation mod- 
eling has been to state that maximum- 
likelihood parameter estimates and good- 
ness-of-fit statistics are derived under the 
assumption of multivariate normality, go on to 
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point out that any reasonable person knows 
that this or that variable cannot possibly be 
normally distributed, and then go on to 
snicker. Thus, many existing causal models in 
the literature are frequently thought to be 
somewhat suspect because the variables did 
not religiously ring the normal bell. In re- 
sponse to the supposed restrictions of the 
maximum-likelihood method of parameter es- 
timation, and with a full realization that social 
scientists often have their hands tied in the 
measurement arena by considerations oppo- 
site to those that might guide the develop- 
ment of measurement instruments with nice 
bell-shaped distributions, statisticians have 
suggested some elegant alternate estima- 
tion procedures. These extremely promis- 
ing newer techniques, such as Browne's 
asymptotically distribution-free (ADF) and 
Muthen's dichotomous and polytomous esti- 
mation techniques, appear to be the methods 
of choice when their requirements of very 
large samples can be met. Monte Carlo (ran- 
dom-number) studies are still needed to de- 
termine the statistical power and bias proper- 
ties of these methods when they are used in 
small samples, but for large samples these al- 
ternate techniques represent a very major ad- 
vance in the statistical theory of causal modeling. 

Of course, it is also important to ask if 
older models in the literature that had been 
estimated with maximum-likelihood parame- 
ter estimates can be "trusted" in their major 
features. A number of investigations have 
compared the results of the newer estimators 
with those of ML estimation for many "real") 
developmental problems, and it has generally 
been concluded that the parameter estimates 
are about the same, although the global 
goodness-of-fit chi-square values for the 
model and the standard errors for the parame- 
ter estimates may differ somewhat when the 
data are not normally distributed (Huba & 
Bentler, 1983a, in press; Huba & Harlow, 
1983, 1986; Huba & Tanaka, 1983). What 
these comparative studies seem to illustrate is 
what many methodologists have been saying 
about causal models for a number of years (at 
least as evinced by their behavior): when the 
data are not normally distributed, trust the 
ML parameter estimates but not necessarily 
the goodness-of-fit statistic or the standard er- 
rors for the individual parameter estimates. 
Using ML estimates with data that are non- 
normal can conceivably add some extra junk 
parameters like correlated errors to a "fitting 
model," although the major parameters are 
generally quite stable (Browne, 1982; Huba & 

Bentler, in press; Huba, Wingard, & Bentler, 
1981). 

As the next generation of computer pro- 
grams for structural equation modeling are 
developed in the ensuing decade, it is likely 
that the developmental psychologist will 
be offered a number of options about how 
the parameters in the model are estimated. 
Browne's (1982, 1984) general framework will 
allow for a number of elaborations based on 
modified estimators (see Tanaka, 1984, for 
one example and the first Monte Carlo evalu- 
ation of ADF estimation). As these newer 
computer programs become widely available 
on computing equipment that is progressively 
faster and less costly to use, developmental 
psychologists will finally be able to choose to 
use statistical modeling techniques that do 
not force them to assume that data which are 
clearly not normally distributed are in fact 
normally distributed. 

In conclusion, it should be noted that 
structural equation modeling methods can be 
specialized to most commonly used mul- 
tivariate analysis techniques, and especially 
those of a statistical nature, such as the mul- 
tivariate analysis of variance, discriminant 
analysis, canonical correlation analysis, and 
multiple linear regression. It is quite likely 
that the next few years will also see the devel- 
opment of computer programs for robust ca- 
nonical correlation analysis, robust linear 
regression, and robust discriminant analysis 
using Browne and Muthen estimators as well 
as further refinements encompassing logistic 
regression estimators (Tanaka & Huba, 1986). 
Finally, developmental psychologists will 
have an arsenal of statistical tools that permit 
us to assume that the data have the distribu- 
tional form that the data actually have. These 
statistical and computational developments of 
Browne (1982, 1984) and Muthen (1984) will 
do much to aid the accurate assessment of im- 
portant developmental psychological theories 
through statistical model testing. 
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