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Introduction

So far we have been investigating individual growth using a
linear model that, in many applied situations, is an
unacceptable oversimplification.

Individual change can be nonlinear. Depending on the process,
a linear model can be predicted to be wrong on the basis of
simple logical considerations.

Individual change can also be discontinuous. For example, an
intervention can produce a sudden, permanent change in
behavior.

In this module, we investigate models for fitting discontinuous
and nonlinear change processes.
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Shift in Elevation Alone
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Wage Trajectories and the GED – Shift in Elevation
Only

Singer and Willett investigate the modeling of discontinuous
change in the context of a study of the effect of attaining a
GED on log wages (Mournane, Bourdett, & Willett, 1999).

The first notion they explore is a discontinuity in slope only.
Modeling this is straightforward — one simply adds GED,
coded as a binary 0–1 variable, as a time-varying predictor at
level-1.

When GED is 0, it essentially disappears from the equation.

When GED is 1, it adds a fixed component to the intercept,
thus creating a discontinuous shift in elevation of the trajectory.
(SW6 Slides 3–5).
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Shift in Slope Alone

In order to model a shift in slope that is not accompanied by a
corresponding shift in elevation, Singer and Willett rely on a
neat trick. They add an additional temporal predictor that is
actually time recentered in terms of the shift point.

GCM Modeling Discontinuous and Nonlinear Change



Introduction
Modeling Discontinuous Individual Change

Selecting Among Alternate Discontinuous Models
Modeling Nonlinear Individual Change via Transformations

Polynomial Regression Models

Shift in Elevation Alone
Shift in Slope Alone
Discontinuities in Slope and Intercept

In-Class Group Exercise

In slide 6 of their Chapter 6 powerpoints, there is an algebraic
error that is fairly obvious. Although their meaning is clear and
their interpretation correct, the equation is technically
incorrect. Singer and Willett themselves point out in the
recorded lecture that there is an error, but do not say what it
is. Put your heads together, detail the error, and explain it
geometrically in terms of the red lines in slide 6.
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Discontinuities in Slope and Intercept

We combine the two previous approaches to obtain
discontinuities in both slope and intercept. [SW Slide 7]. The
level-1 model is

Yij = π0i + π1iEXPERij + π2iGEDij +

π3iPOSTEXPij + εij (1)

[GROUP EXERCISE. Re-express POSTEXP in terms of
EXPER and re-write the above model when GED = 0 and
when GED = 1.]
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An Alternate Model

An alternate approach to modeling changes in both slope and
intercept is describe by S&W on page 199. The level-1 model is

Yij = π0i + π1iEXPERij + π2iGEDij +

π3iGEDij × EXPERij + εij (2)

[GROUP EXERCISE. Re-write the above model when
GED = 0 and when GED = 1. Then compare the model of
Equation 1 with that of Equation 2.]
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Introduction

In their section 6.1.2, S&W present an extensive analysis of
fitting their wage data to a wide variety of models. In
homework assignment 3, you will set up the two-level and
composite versions of these models and reproduce the results in
their Tables 6.2 and 6.3. We’ll take a look at the baseline model
and one of the followup models for clues on how to proceed.
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A Baseline — Model A

Here is Model A, the baseline model described in detail on
S&W page 201:

1 Level 1.

Yij = π0i + π1iEXPERij + π2i(UERATEij − 7) + εij

2 Level 2.

π0i = γ00 + γ01(HGCi − 9) + ζ0i

π1i = γ10 + γ12BLACKi + ζ1i

π2i = γ20

3 Composite.

Yij = γ00 + γ01(HGCi − 9) + γ10EXPERij +

γ12BLACKi × EXPERij + γ20(UERATEij − 7)

+[ζ0i + ζ1iEXPERij ] + εij
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Fitting Model A

Using lmer() to fit the model is straightforward.

Yij = γ00 + γ01(HGCi − 9) + γ10EXPERij +

γ12BLACKi × EXPERij + γ20(UERATEij − 7)

+[ζ0i + ζ1iEXPERij ] + εij

model.a <-

lmer(lnw ~ 1 + hgc.9 + exper + black:exper +

ue.7 + (1 + exper | id), REML=FALSE)
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Fitting Model A

> data <- read.table("wages_pp.txt",header=T, sep=",")

> attach(data)

> model.a <- lmer(lnw ~ 1 + hgc.9 + exper + black:exper +

+ ue.7 + (1 + exper | id), REML=FALSE)

> model.a

Linear mixed model fit by maximum likelihood

Formula: lnw ~ 1 + hgc.9 + exper + black:exper + ue.7 + (1 + exper | id)

AIC BIC logLik deviance REMLdev

4849 4909 -2415 4831 4877

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.05064 0.2250

exper 0.00163 0.0404 -0.320

Residual 0.09480 0.3079

Number of obs: 6402, groups: id, 888

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.74899 0.01140 153.4

hgc.9 0.04001 0.00636 6.3

exper 0.04405 0.00260 16.9

ue.7 -0.01195 0.00179 -6.7

exper:black -0.01818 0.00448 -4.1

Correlation of Fixed Effects:

(Intr) hgc.9 exper ue.7

hgc.9 0.086

exper -0.566 -0.033

ue.7 -0.363 -0.039 0.277

exper:black -0.059 -0.018 -0.354 0.070
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Model B

Model B adds GED as both a fixed and random effect. This
occurs when the GED term is added to the level-1 model, and,
at level 2, the coefficient for GED has a fixed and random term.
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Model B

1 Level 1.

Yij = π0i+π1iEXPERij+π2i(UERATEij−7)+π3iGEDij+εij

2 Level 2.

π0i = γ00 + γ01(HGCi − 9) + ζ0i

π1i = γ10 + γ12BLACKi + ζ1i

π2i = γ20

π3i = γ30 + ζ3i

3 Composite.

Yij = γ00 + γ01(HGCi − 9) + γ10EXPERij +

γ12BLACKi × EXPERij + γ20(UERATEij − 7)

+γ30GEDij + [ζ0i + ζ1iEXPERij + ζ3iGEDij ] + εij
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Model B

> model.b <- lmer(lnw ~ 1 + hgc.9 + exper + black:exper + ue.7 +

+ ged + (1 + exper + ged| id), REML=FALSE)

> model.b

Linear mixed model fit by maximum likelihood

Formula: lnw ~ 1 + hgc.9 + exper + black:exper + ue.7 + ged + (1 + exper + ged | id)

AIC BIC logLik deviance REMLdev

4832 4919 -2403 4806 4858

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.04361 0.2088

exper 0.00166 0.0407 -0.308

ged 0.02824 0.1680 0.067 -0.318

Residual 0.09416 0.3069

Number of obs: 6402, groups: id, 888

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.73421 0.01180 147.0

hgc.9 0.03833 0.00627 6.1

exper 0.04322 0.00262 16.5

ue.7 -0.01161 0.00179 -6.5

ged 0.06132 0.01845 3.3

exper:black -0.01820 0.00447 -4.1

Correlation of Fixed Effects:

(Intr) hgc.9 exper ue.7 ged

hgc.9 0.098

exper -0.508 -0.029

ue.7 -0.370 -0.045 0.268

ged -0.284 -0.045 -0.119 0.055

exper:black -0.047 -0.018 -0.350 0.069 -0.020
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Comparing Model A and Model B

> anova(model.a,model.b)

Data:

Models:

model.a: lnw ~ 1 + hgc.9 + exper + black:exper + ue.7 + (1 + exper | id)

model.b: lnw ~ 1 + hgc.9 + exper + black:exper + ue.7 + ged + (1 + exper +

model.b: ged | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

model.a 9 4849 4909 -2415

model.b 13 4832 4919 -2403 25 4 5e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Modeling Nonlinear Change via Transformations

A major advantage of a linear regression system with a normal
outcome variable is that some classic mathematical results hold.

When the relationship between X and Y is nonlinear, a first
option is to consider transformation to linearity. This approach
is discussed in many fundamental regression texts, because of
benefits like these:

1 Transformation to linearity often simultaneously normalizes
the dependent variable

2 Since outcome variables are often delivered in a scale that
is essentially arbitrary, transformations, especially when
simple and clearly specified, aren’t doing any serious harm

3 Parameters in a linear regression have an especially simple
interpretation
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The Mosteller-Tukey Transformation Ladder

Mosteller and Tukey introduced their “rule of the bulge” and
“transformation ladder” for transforming to linearity.
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Illustration — Using the Bulge Rule

Singer and Willett discuss how to employ the rule of the bulge
in the context of some data for a single participant in the
Berkeley Growth Study.

> detach(data)

> data <- read.table("berkeley_pp.txt",header=T,sep=",")

> attach(data)
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Illustration — Using the Bulge Rule

Example (Using the Bulge Rule)

Here is the plot of the original data:
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Illustration — Using the Bulge Rule

Example (Using the Bulge Rule)

Here is the plot of the data with iq raised to the 2nd power:
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Illustration — Using the Bulge Rule

Example (Using the Bulge Rule)

Here is the plot of the data with iq raised to the 2.5th power:
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Illustration — Using the Bulge Rule

Example (Using the Bulge Rule)

Singer and Willett settle on raising iq to the 2.3 power:
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Illustration — Using the Bulge Rule

Example (Using the Bulge Rule)

A similar result is obtained by raising age to the 1/2.3 power:
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Fitting a Polynomial to Change Data

Polynomial Regression Models

Many nonlinear functions can be approximated very well with
polynomials of a reasonably low order.
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Fitting a Polynomial to Change Data

Interpreting a Polynomial

Polynomials in X have an “order” given by the highest power of
X in the equation. So, for example, Y = 4 is a 0th order
polynomial, Y = 2X + 3 is a first order polynomial (linear),
Y = 4X 2 + 2X + 7 is a second order (quadratic) polynomial,
etc.

We are all familiar with the fact that in a first order polynomial
of the form Y = b1X + b0, b1 is the slope and b0 is the intercept.

A fact we learned in calculus is that the first derivative of the
function gives its slope. So, of course, if Y = b1X + b0, the first
derivative of Y with respect to X , i.e., b1, is the slope of the
function, and this slope is constant with respect to X (hence
the line is straight).
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Fitting a Polynomial to Change Data

Interpreting a Polynomial

Consider the second-order polynomial Y = b0 + b1X + b2X
2.

Of course the intercept, the value of Y when X = 0, is still b0.

The slope of the function is 2b2X + b1. The slope of the function
is changing as a function of X , so now the plot is curved. The
slope starts out positive, but becomes zero when X = −b1/2b2.
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Fitting a Polynomial to Change Data

Interpreting a Polynomial

Here is a graph of the function Y = 50 + 3.8X − .03X 2. Note
the slope becomes 0 at X = −3.8/2(−.03) = 63.33.

Example (Quadratic Function)
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Fitting a Polynomial to Change Data

The Externalizing Behavior Study

Keily, Bates, Dodge, and Pettit (2000) examined changes over
time in externalizing behaviors, using Achenbach’s (1991) Child
Behavior Checklist.

Investigation of the individual trajectories shows that the
degree polynomial required to obtain adequate fit varies widely.

In order to apply multilevel modeling to the data, we choose as
our level-1 model the highest order polynomial required to fit
any child.

We might settle on a quartic model, but this runs the danger of
overfitting.
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Fitting a Polynomial to Change Data

The Externalizing Behavior Study

We begin by loading in the data and creating some ancillary
variables.

> detach(data)

> data <- read.table("external_pp.txt",header=T,sep=",")

> attach(data)

> TIME <- GRADE - 1

> TIME2 <- TIME^2

> TIME3 <- TIME^3
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Choosing a Polynomial Model

Next we fit a sequence of models. We begin with the basic “no
change” model.

> model.a <- lmer(EXTERNAL ~ 1 + (1|ID),REML=FALSE)

> model.a

Linear mixed model fit by maximum likelihood

Formula: EXTERNAL ~ 1 + (1 | ID)

AIC BIC logLik deviance REMLdev

2016 2027 -1005 2010 2008

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 87.4 9.35

Residual 70.2 8.38

Number of obs: 270, groups: ID, 45

Fixed effects:

Estimate Std. Error t value

(Intercept) 12.96 1.48 8.74
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Choosing a Polynomial Model

Next comes the linear change model:

> model.b <- lmer(EXTERNAL ~ 1 + TIME +

+ (1+TIME|ID),REML=FALSE)

> model.b

Linear mixed model fit by maximum likelihood

Formula: EXTERNAL ~ 1 + TIME + (1 + TIME | ID)

AIC BIC logLik deviance REMLdev

2004 2025 -996 1992 1989

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 123.52 11.11

TIME 4.69 2.17 -0.521

Residual 53.72 7.33

Number of obs: 270, groups: ID, 45

Fixed effects:

Estimate Std. Error t value

(Intercept) 13.290 1.836 7.24

TIME -0.131 0.415 -0.31

Correlation of Fixed Effects:

(Intr)

TIME -0.589
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Fitting a Polynomial to Change Data

Choosing a Polynomial Model

Here is the quadratic:

> model.c <- lmer(EXTERNAL ~ 1 + TIME + TIME2 +

+ (1+TIME + TIME2|ID),REML=FALSE)

> model.c

Linear mixed model fit by maximum likelihood

Formula: EXTERNAL ~ 1 + TIME + TIME2 + (1 + TIME + TIME2 | ID)

AIC BIC logLik deviance REMLdev

1996 2032 -988 1976 1974

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 107.08 10.35

TIME 24.61 4.96 -0.072

TIME2 1.22 1.10 -0.119 -0.908

Residual 41.98 6.48

Number of obs: 270, groups: ID, 45

Fixed effects:

Estimate Std. Error t value

(Intercept) 13.970 1.774 7.88

TIME -1.151 1.107 -1.04

TIME2 0.204 0.228 0.89

Correlation of Fixed Effects:

(Intr) TIME

TIME -0.322

TIME2 0.131 -0.932
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Choosing a Polynomial Model

Here is the cubic:

> model.d <- lmer(EXTERNAL ~ 1 + TIME + TIME2 + TIME3 +

+ (1+TIME + TIME2 + TIME3 |ID),REML=FALSE)

> model.d

Linear mixed model fit by maximum likelihood

Formula: EXTERNAL ~ 1 + TIME + TIME2 + TIME3 + (1 + TIME + TIME2 + TIME3 | ID)

AIC BIC logLik deviance REMLdev

1997 2051 -984 1967 1968

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 128.861 11.352

TIME 106.819 10.335 -0.479

TIME2 16.651 4.081 0.531 -0.975

TIME3 0.177 0.421 -0.682 0.939 -0.981

Residual 37.824 6.150

Number of obs: 270, groups: ID, 45

Fixed effects:

Estimate Std. Error t value

(Intercept) 13.7945 1.9159 7.20

TIME -0.3501 2.3279 -0.15

TIME2 -0.2343 1.0593 -0.22

TIME3 0.0584 0.1300 0.45

Correlation of Fixed Effects:

(Intr) TIME TIME2

TIME -0.511

TIME2 0.450 -0.957

TIME3 -0.447 0.887 -0.978
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Fitting a Polynomial to Change Data

Comparing Models

> anova(model.a,model.b,model.c,model.d)

Data:

Models:

model.a: EXTERNAL ~ 1 + (1 | ID)

model.b: EXTERNAL ~ 1 + TIME + (1 + TIME | ID)

model.c: EXTERNAL ~ 1 + TIME + TIME2 + (1 + TIME + TIME2 | ID)

model.d: EXTERNAL ~ 1 + TIME + TIME2 + TIME3 + (1 + TIME + TIME2 + TIME3 |

model.d: ID)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

model.a 3 2016 2027 -1005

model.b 6 2004 2025 -996 18.51 3 0.00035 ***

model.c 10 1996 2032 -988 15.91 4 0.00315 **

model.d 15 1997 2051 -984 8.48 5 0.13170

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What do you think? (C.P.)
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