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Abstract 

 

General procedures are presented for comparing correlations or groups of correlations 

between and/or within samples, with or without the assumption of multivariate normality.   

The methods are implemented in a freeware Mathematica package, WBCORR, and 

illustrated with numerical examples, including comparison of correlation matrices over 

time, simultaneous comparison of sets of correlations in two or more independent groups, 

comparison of several predictors of the same criterion, comparison of circumplex 

structures across groups, and comparison of predictor-criterion relations across groups.   
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Comparing Correlations: Pattern Hypothesis Tests Between and/or Within Independent 

Samples 

 

Preamble 

Many years ago, a psychologist colleague approached me with a question about 

how to compare two dependent correlations. He was puzzled because equations in two of 

the few papers then available on the topic seemed to disagree (actually, both contained 

minor typographical errors). I found the topic fascinating, and got deeply involved in 

related research of my own.  Reviewing the literature, I saw a paper by Rod McDonald 

(1975) on testing pattern hypotheses on correlations, which discussed a general method 

for comparing correlations, and alluded to the availability of some computer software he 

had produced for performing the analyses  At the time, Rod and I were engaged in a 

spirited (to put it mildly) debate on factor  indeterminacy, and it was with some 

trepidation that I sent him a letter asking if I could acquire the software he had produced.  

Rod responded quickly and graciously with the requested materials, which saved me a 

substantial amount of time producing a Monte Carlo study I was working on (Steiger, 

1980b).  This is only one of the ways that my own work (like that of countless others) has 

been influenced positively by interactions with Rod over the years.  

 

Introduction 

Normal Theory Pattern Hypothesis Tests 

A pattern hypothesis on a set of statistical parameters specifies that sets of 

parameters are equal to each other, or to specified numerical values.  Pattern hypotheses 

on elements of one or more correlation coefficients have wide application in the analysis 

of social science data.  Unfortunately, the general statistical theory necessary for such 
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comparisons was not made widely available in textbooks prior to 1970, and seemed 

generally unknown to social scientists at that time. A classic paper by Olkin and Siotani 

(1964, 1976) gave examples of several interesting comparisons, and several subsequent 

papers (Dunn & Clark, 1969; Neill & Dunn, 1975) by Dunn and her students raised 

awareness of the fact that correlations may be compared either within or between 

samples.  McDonald (1975) gave a concise description of a general approach to testing 

pattern hypotheses in a single sample, using the method of maximum likelihood, which 

assumed a Wishart distribution for the observed covariance matrix.  This approach, a 

special case of the analysis of covariance structures, modeled the covariance matrix of the 

observed variables as  

 ( )=Σ ∆Ρ γ ∆Σ ∆Ρ γ ∆Σ ∆Ρ γ ∆Σ ∆Ρ γ ∆  (1) 

with ( )Ρ γΡ γΡ γΡ γ  a patterned correlation matrix that is a function of a vector of free parameters 

γγγγ , and ∆∆∆∆  a diagonal matrix of free scale factors that are, in this application, generally 

considered nuisance parameters.  This model is a special case of all of the commonly 

employed structural equation models, including the LISREL model. Consequently, 

maximum likelihood and GLS estimates (and their associated test statistics) may be 

obtained iteratively using standard methods for nonlinear optimization.   

Browne (1977) presented a generalized least squares procedure for testing any 

correlational pattern hypothesis in a single sample.  Browne’s development had a 

significant advantage over the maximum likelihood approach, as the generalized least 

squares estimators are available in closed form, so nonlinear optimization routines, and 

their attendant convergence problems, could be avoided with little apparent loss of 

efficiency or accuracy.  Browne (1977) gave an example of how to fit a perfect 

circumplex model as a correlational pattern hypothesis. Steiger (1980a, 1980b) reviewed 
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the preceding work, and suggested a modification of Browne’s (1977) approach to use the 

inverse hyperbolic tangent (“Fisher transform”) to improve small sample performance. 

Steiger (1979) implemented his approach in the freeware program MULTICORR.  

McDonald (1975) had shown that OLS estimates are available in closed form when a 

correlational pattern hypothesis is expressed as a covariance structure model. Browne 

(1984) showed how to construct an asymptotic chi-square statistic using OLS estimates. 

The approaches of Browne (1984) and McDonald (1975) may thus be combined to yield a 

noniterative chi-square test using OLS estimates. 

 

Asymptotically Distribution Free (ADF) Procedures 

Although it is seldom mentioned in textbooks, many standard correlational tests 

are not robust to violations of the assumption of multivariate normality, and are especially 

sensitive to kurtosis.  Layard (1972, 1974) discussed robust tests for comparing 

covariance matrices and functions of their elements. Browne (1982, 1984) developed 

general robust methods for the analysis of covariance structures, and coined the term 

asymptotically distribution free (ADF) to describe the procedures.   Browne discussed use 

of ADF analysis of covariance structures to test correlational pattern hypotheses.  

Steiger and Hakstian (1982) presented expressions for the asymptotic distribution 

of correlations under very general distributional assumptions, and suggested that this 

result be used to modify the GLS approaches, thus yielding robust tests of correlational 

pattern hypotheses.   

Comparing Functions of a Correlation Matrix 

The approaches of McDonald (1975), Browne (1977) and Steiger (1980a) had 

concentrated on tests involving simple Pearson correlations. Olkin and Siotani (1964, 

1976) had also discussed the use of the multivariate delta method to perform statistical 
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pattern hypotheses tests on multiple and partial correlations.  Steiger and Browne (1984) 

developed an alternative approach that allowed comparison of multiple, partial, and/or 

canonical correlations using a minor modification of GLS and ADF methods for testing 

simple correlations.  Olkin and Press (1995) gave detailed examples of the use of the 

delta method for comparing correlations of various kinds.   

The work discussed above allows tests on single samples, which may be 

conceptualized as N observations on a vector of p random variables in one population. 

This includes the case where the same variables are sampled on the same subjects several 

times. Consequently, this theory can be used to test, say, the hypothesis that a matrix of 

correlations measured several times on the same individuals has remained stable over 

time (Steiger, 1980a).  However, the papers discussed above do not deal with the case 

where several independent samples (possibly of different size) are taken, and correlations 

need to be compared across the samples with the full range of pattern hypotheses. For 

example, although a normal theory test for comparing independent correlation matrices is 

discussed by Jennrich (1970) and a similar ADF test was developed by Modarres and 

Jernigan (1993), these tests cannot be computed by Steiger’s (1979) MULTICORR. 

 The present paper extends previously available results in several ways:   

1.  I extend previous theoretical work by Steiger (1980b) in a fairly obvious way 

to the case of several independent samples, and I provide computer software for 

performing the analyses.  

2. I discuss Steiger’s (1980c) observation that unconstrained correlations (those 

elements of the correlation matrix not constrained to be equal to other correlations or 

specified numerical values) need not be included in the null hypothesis specification, 

thereby reducing computational effort in testing some hypotheses.  I then prove the 

surprising result that eliminating these unconstrained correlations has no effect on the chi-
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square test statistic, parameter estimates of constrained correlations, or their estimated 

standard errors.   

 3. I demonstrate how the chi-square statistic and parameter estimates may be 

obtained without inverting the estimated covariance matrix of correlations in both the 

normal theory and ADF cases, and whether or not all correlations are included in the 

null hypothesis specification. 

  

Pattern Hypothesis Notation 

 

 Let 1 2, , Ax x x…  be A independent random vectors, of (possibly unequal) order 

, 1,2,ap a A= … , having continuous distributions with mean vectors , 1,2, ,a i A= …mmmm  

and variance-covariance matrices , 1,2, .a a A= …SSSS  Define , 1,2, ,a a A= …RRRR  with typical 

element a
ijρ , as the population (Pearson product-moment) corrrelation matrix of .ax  Let 

aρρρρ  be the 1av ×  vectors whose elements are selected lower triangular elements of the aRRRR , 

arranged, for all a, in some consistent fashion.  If all non-redundant elements of  aRRRR  are 

in aρρρρ  (and they need not be), then 2( ) / 2.a a av p p= −  Define V as  

 
1

A

a
a

V v
=

= ∑ . (2) 

 A pattern hypothesis on the aRRRR  is a hypothesis that sets of their elements are 

equal to each other, or to specified numerical values. Let there be q subsets of the 

elements of the iRRRR  that are hypothesized to (within subset) take on the same unspecified 

value , 1,2,i i qγ = … , and/or possibly w other correlations hypothesized to have a specific 

numerical value.  A convenient notation for expressing such hypotheses is as follows: 
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1

2
0 :

A

H

 
 
  =
 
 
 

"

rrrr
rrrr

r = g + rr = g + rr = g + rr = g + r

rrrr

*D  (3) 

where gggg  is a 1q×  vector of common but unspecified correlations, *rrrr is a 1V ×  vector 

containing w numerically specified values (possibly zero), where appropriate, and zeroes 

elsewhere, and ∆  is a V q×  matrix of zeroes and ones with typical element  

 ij i jδ ρ γ= ∂ ∂ . (4) 

∆  is of rank q. 

 Consider the following simple example. Suppose A = 2,  1 2 3,p p= =  and one 

hypothesizes that 1 2=R RR RR RR R , i.e., that the two 3 3×  correlation matrices are equal. The null 

hypothesis may then be written in the notation of Equations 1 through 3 as   

 

1
21

1
31

1 1
32

22
21

3
2

31

2
32

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

ρ

ρ
γ

ρ
γ

ρ γ
ρ

ρ

 
    
    
      
      = +      
           
              

 (5) 

Asymptotic Sampling Theory 
 

 Following Steiger and Browne (1984), let ix , jx , kx , and hx  be random variables 

with a multivariate distribution having finite fourth-order moments.  Define 

 ( )i iE xµ =  (6) 
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 ( )( )ij i i j jE x xσ µ µ= − −  (7) 

 ( )( )( )( )ijkh i i j j k k h hE x x x xσ µ µ µ µ= − − − −  (8) 

 ( ) 1/2

ij ij ii jjρ σ σ σ
−

=  (9) 

Next consider samples, based on samples of 1N n= +  independent observations on 

variates ix , jx , kx , and hx  .  We define the sample statistic 

 1

1

N

i ri
r

m N x−

=
= ∑  (10) 

 ( )( )1

1

N

ij ri i rj j
r

s n x m x m−

=
= − −∑  (11) 

 ( )( )( )( )1

1

N

ijkh ri i rj j rk k rh h
r

s n x m x m x m x m−

=
= − − − −∑  (12) 

 ( ) 1/2
ri ri i iiz x m s−= −  (13) 

 ( ) 1/2 1

1

N

ij ij ii jj ri rj
r

r s s s n z z
− −

=
= = ∑  (14) 

 ( ) 1/2 1

1

N

ijkh ijkh ii jj kk hh ri rj rk rh
r

r s s s s s n z z z z
− −

=
= = ∑  (15) 

 Let , 1,2,a a A=R … be A  sample correlation matrices, each based on aN  

independent observations. Let the vectors  , 1,2,a a A=r … be composed (analogously to 

the aρρρρ  in the preceding section) of the lower triangular elements of the aR .  Define *
ar   
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as ( )* 1/2
a a a an= −r r rrrr .  It has been established (Hsu, 1949; Isserlis, 1916; Steiger & 

Hakstian, 1982) that under very general conditions *
ar  has an asymptotic distribution that 

is ( ), a0 YYYYN  (i.e., multivariate normal with a null mean vector and covariance matrix 

aYYYY ). aYYYY  has typical element ( )**
, ,a aa

ij kh ij khCov r rψ =   given by 

 
( )
( ) ( )

1
, 4

1 1
2 2

a a a a a a aa
ij kh ijkh ij kh iikk jjkk iihh jjhh

a a a a aa
ij iikh jjkh kh ijkk ijhh

ψ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

= + + + +

− + − +
 (16) 

 If the x’s have an elliptical distribution with common relative kurtosis coefficient η , then 

Equation 16  becomes  

 
( )( ) ( )( )
( )( ) ( )( )

1
, 2

i i i i i i i i i i ii
jh jk kh km kh hm jm jh hm kh kj jhi

jk hm
i i i i i i i i ii i i

jh jm mh km kj jm jm jk km kh km mh

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ψ η

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

 − − + − − =  
+ − − + − −  

(17) 

The multivariate normal distribution is a member of the elliptical class with 1η = . 

Substituting this value in the above equation yields the special case formula (Pearson & 

Filon, 1898; Hsu, 1949; Olkin & Siotani, 1976)  for the covariances of correlations based 

on observations from a multivariate normal distribution.   

Define *r as    

 

*
1 1 1

*
* 2 2 2

*
A A A

     
     
     = − = = −     
     
          

r r

r r
r r

r r

ρρρρ

ρρρρρρρρ

ρρρρ

" " "
 (18) 

and N is a diagonal matrix of the form 
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1

2

1

2

A

v

v

A v

n

n

n

 
 
 =  
 
  

I 0 0 0

0 I 0 0
N

0 0 I

" " # "
$

 (19) 

with 
aνI a a aν ν×  identity matrix. 

It follows immediately from well known theory on linear composites that 
1
2 *N r has 

an asymptotic distribution which is ( ),0 YYYYN , where YYYY  is a symmetric block-diagonal 

covariance matrix with the form 

 

1

2

3

A

 
 
 

=  
 
 
  

0 0 0

0 0 0

0 0 0

0 0 0

ΨΨΨΨ
ΨΨΨΨ

ΨΨΨΨ ΨΨΨΨ

ΨΨΨΨ

$
$
$

" " " # "
$

 (20) 

Estimation Theory and Significance Tests 

In practice, estimates of the elements of rrrr under the null hypothesis of Equation 3  

are restricted in that estimates of correlations that are hypothesized to be equal are 

required to be equal in value, and estimates of correlations that are hypothesized to be 

equal to some numerical value are restricted to be equal to that numerical value. 

Consequently, r̂rrr , the vector of estimates of the elements of r r r r under 0H , may written as  

 ˆ ˆ∆ + ****r = g rr = g rr = g rr = g r  (21) 

and so the problem of estimating rrrr for a given pattern hypothesis can be reduced to 

finding an estimate ĝggg  for .gggg   
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 The “best” estimates are those that minimize an appropriately chosen discrepancy 

function. The most commonly used discrepancy functions are Ordinary Least Squares 

(OLS), Generalized Least Squares (GLS), and Maximum Likelihood (ML). I shall deal 

with OLS and GLS estimators here, since they can be expressed compactly in closed 

form. 

 OLS estimators, in the specialized sense I define them here, minimize the sum of 

squared discrepancies between the vectors ar  and estimates ˆaρρρρ , where, in the multiple 

sample case with unequal sample sizes, each squared discrepancy is weighted by an . The 

OLS estimator of gggg  thus minimizes the discrepancy function 

 ( ) ( ) ( ),OLSF
′

= − ∆ − − ∆ −r r N r* ** ** ** *g g r g rg g r g rg g r g rg g r g r  (22) 

where N is as defined in Equation 19. 

 ˆ OLSgggg is given by 

 ( ) ( )1 *ˆ OLS
−′ ′= ∆ ∆ ∆ −N N rg rg rg rg r  (23) 

With A = 1, or with equal an , N may be factored out of the above expression, and 

ˆ OLSgggg  is equivalent to the ordinary (unweighted) least squares estimator discussed by 

previous authors, i.e. ( ) ( )1 *ˆUOLS
−′ ′= ∆ ∆ ∆ −rg rg rg rg r .  The OLS estimator of r r r r is computed 

from that of g g g g via Equation 21. 

 Define Ψ̂ΨΨΨ  as a consistent estimator of ΨΨΨΨ under the null hypothesis. We then 

define generalized least squares estimator ˆ GLSgggg  as that which minimizes the discrepancy 

function 

 ( ) ( ) ( )ˆ,GLSF
′

= − ∆ − − ∆ −r r r−1−1−1−1ΩΩΩΩ* ** ** ** *g g r g rg g r g rg g r g rg g r g r , (24) 

where  
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1 1
2 2ˆ ˆ− −= N NΩ ΨΩ ΨΩ ΨΩ Ψ  (25) 

and 
1
2−N  is the inverse square root matrix of the matrix N defined in Equation 19. 

 This estimate is given by 

 ( ) ( )1 *ˆ ˆˆ GLS

−
′ ′= −r−1 −1−1 −1−1 −1−1 −1∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ωg rg rg rg r  (26) 

 We now sketch a proof that GLSF  has an asymptotic distribution that is 2
V qχ − , and 

thus provides a significance test of  “badness of fit” of the pattern hypothesis.  In what 

follows, the notation →∞N  indicates that , aa N∀ →∞ .  First, we recall the following 

Lemma (Timm, 1975, p. 132) on the distribution of quadratic forms. 

 

Lemma. Let y be a random vector having a multivariate normal distribution with 

mean µµµµ  and covariance matrix ΣΣΣΣ . Then the quadratic form φ ′= y Ay  has a chi 

square distribution with ��degrees of freedom and noncentrality parameter 

λ = 'Am mm mm mm m  if and only if AΣΣΣΣ  is idempotent and of rank �. 

 
The Lemma will apply to asymptotically multinormal variates if plim

→∞N
AΣΣΣΣ  is idempotent 

and of rank ����To apply the Lemma, we rewrite GLSF  as  

 ( ) ˆˆ, 'GLSF =r y y−1−1−1−1ΨΨΨΨgggg  (27) 

 with  

 ( )( )1 1 1
2 2 2* *ˆ ˆ( )= − ∆ − = − ∆ =y N I Q r N r N eγ −γ −γ −γ −r rr rr rr r , (28) 

where e represents the fitted residuals, and  

 ( ) 1ˆ ˆ ˆ−
′ ′=Q −1 −1−1 −1−1 −1−1 −1∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω  (29) 
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 The consistency of Ψ̂ΨΨΨ  implies that  

 ˆplim
→∞

=
N

Ψ ΨΨ ΨΨ ΨΨ Ψ  (30) 

and hence  

 ( ) 11 1ˆplim
−− −

→∞
′ ′= =

N
Q Q ∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω∆ Ω ∆ ∆ Ω  (31) 

To apply the Lemma, we need to find the asymptotic distribution of y. From Equations 28 

and 31, it follows that y has the same asymptotic distribution as  

 ( )( )1 1
2 2*− ∆ − =N I Q r N zρρρρ  (32) 

Under a true null hypothesis, * = −ρ ρ ∆γρ ρ ∆γρ ρ ∆γρ ρ ∆γ , and we have  

 

( )
( )

( )
( )
( )

( )( )

* *

.

= − − −

= − − + − +

= − − − − +

= − − − − +

= − − −

= − −

z r Q r

r Q r

r Q r Q

r Q r

r Q r

I Q r

∆ ρ ρ∆ ρ ρ∆ ρ ρ∆ ρ ρ

∆ ρ ∆γ ρ ∆γ∆ ρ ∆γ ρ ∆γ∆ ρ ∆γ ρ ∆γ∆ ρ ∆γ ρ ∆γ

ρ ∆ ρ ∆ ∆γ ∆γρ ∆ ρ ∆ ∆γ ∆γρ ∆ ρ ∆ ∆γ ∆γρ ∆ ρ ∆ ∆γ ∆γ

ρ ∆ ρ ∆γ ∆γρ ∆ ρ ∆γ ∆γρ ∆ ρ ∆γ ∆γρ ∆ ρ ∆γ ∆γ

ρ ∆ ρρ ∆ ρρ ∆ ρρ ∆ ρ

∆ ρ∆ ρ∆ ρ∆ ρ

 (33) 

Consequently, y  has the same asymptotic distribution as  
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( )( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 1
2 2

1 1
2 2

1 1
2 2

1 1 1 1
2 2 2 2

1
2

1 1

1 1

,

− −

− −

= − −

= − − −

′ ′= − − −

′ ′= − − −

= − −

N z N I Q r

N r N Q r

N r N r

N r N N N r

I V N r

−1−1−1−1

−1−1−1−1

∆ ρ∆ ρ∆ ρ∆ ρ

ρ ∆ ρρ ∆ ρρ ∆ ρρ ∆ ρ

ρ ∆ ∆ Ω ∆ ∆ Ω ρρ ∆ ∆ Ω ∆ ∆ Ω ρρ ∆ ∆ Ω ∆ ∆ Ω ρρ ∆ ∆ Ω ∆ ∆ Ω ρ

ρ ∆ ∆ Ω ∆ ∆ Ψ ρρ ∆ ∆ Ω ∆ ∆ Ψ ρρ ∆ ∆ Ω ∆ ∆ Ψ ρρ ∆ ∆ Ω ∆ ∆ Ψ ρ

ρρρρ

 (34) 

with  

 ( )1 1
2 2

11 1−− −′ ′=V N N∆ ∆ Ω ∆ ∆ Ψ∆ ∆ Ω ∆ ∆ Ψ∆ ∆ Ω ∆ ∆ Ψ∆ ∆ Ω ∆ ∆ Ψ . (35) 

From the result of Equation 34, and standard results on expected value and variance of 

linear composites, it immediately follows that y has an asymptotic distribution that is 

( ) ( )( ),
′− −0 I V I VΨΨΨΨN . To show that GLSF  is asymptotically 2

V qχ − , we must show that 

( ) ( )1− ′− −I V I VΨ ΨΨ ΨΨ ΨΨ Ψ  is idempotent, and of rank V q− . Following some substitution 

and recombination, we find that  

 ( ) ( ) ( )1− ′ ′− − = −I V I V I VΨ ΨΨ ΨΨ ΨΨ Ψ  (36) 

Idempotency  of ( )′−Ι V  is established easily by substitution, and the rank property 

follows from the rank of ∆∆∆∆ , which is q. This completes the proof. 

 Special cases of Equations 26 through 29 may be obtained by selecting different 

estimators for ΨΨΨΨ  (and hence ΩΩΩΩ ).  Under multivariate normal theory, one may obtain a 

“single stage GLS” (GLS) estimator by substituting sample correlations for ijρ  in the 

following equation to obtain estimates of the elements of ΨΨΨΨ , 

 
( )( ) ( )( )

( )( ) ( )( )
,

i i i i i i i i i i i ii
jk hm jh jk kh km kh hm jm jh hm kh kj jh

i i i i i i i i ii i i
jh jm mh km kj jm jm jk km kh km mh

ψ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

= − − + − −

+ − − + − −
 (37) 
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then using the resulting Ψ̂ΨΨΨ  in Equations 26 through 29. However, the null hypothesis may 

be incorporated into the estimates of the elements of  ΨΨΨΨ  by using OLS estimates for the 

ijρ  instead of sample correlations in Equation 37.  The resulting estimates are referred to 

as  “2-stage GLS” (TSGLS) estimators.  In a similar vein, one may compute “single-stage 

ADF” (ADF) estimators by constructing Ψ̂ΨΨΨ  with sample correlations and standardized 4th 

order moments in Equation 16, and “2-stage ADF” (TSADF) estimators by using OLS 

estimates instead of sample correlations.  Steiger and Hakstian (1982) give an example of 

calculation of a test statistic for comparing two dependent correlations using the TSADF 

approach. 

 Define e as the fitted residuals, i.e.  

 ˆ= − ∆ −e r ****g rg rg rg r  (38) 

 

 Estimates of the covariance matrix of the fitted residuals may be calculated as 

 % ( ) 11/2 1/2ˆ ˆVar( )
−− − ′ ′=   

e N N−1−1−1−1Ω − ∆ ∆ Ω ∆ ∆Ω − ∆ ∆ Ω ∆ ∆Ω − ∆ ∆ Ω ∆ ∆Ω − ∆ ∆ Ω ∆ ∆  (39) 

 

Asymptotically Distribution Free Procedures 

The generalized least squares testing procedures described in the preceding 

sections, in particular the test statistic of Equation 24, holds so long as r is an 

asymptotically unbiased and multinormal estimate of rrrr, and the estimated variance-

covariance matrix (i.e., ˆ
OLSΩΩΩΩ  in Equation 24) for the is consistent. If the population 

distribution departs from multivariate normality, r will, under very general conditions, 

remain asymptotically normal but the matrix YYYY with elements defined as in Equation 37 

will no longer be correct. As Steiger and Hakstian (1982) have pointed out, this problem 
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can be alleviated by substituting, in place of Equation 37, a more general formula, 

Equation 16, which holds whether or not the population distribution is multivariate 

normal. This formula, which yields the asymptotically distribution free (ADF) 

correlational procedures,  should be employed with caution, as it requires sample 

estimates of 4th order moments. These estimates have large standard errors at small to 

moderate sample sizes, so convergence of the ADF test statistic to its asymptotic 

distribution is often considerably slower than the normal theory variant. Employing the 

ADF formula when it is not needed (i.e., when the population distribution is multivariate 

normal) may result in a considerable loss of power.  

  

It should be noted that, with k > 1, ∆∆∆∆  of the form in Equation 40, 

 

 
 
 =
 
 
 

I

I

I

∆∆∆∆
"

 (40) 

and TSGLS estimates, a slight modification of the statistic GLSF  (produced by using  aN  

rather than 1A An N= −  in the matrix N) is equivalent to the one given by Jennrich (1970) 

for testing the equality of 2 or more correlation matrices. If all elements of R R R R (including 

those that are not constrained by the null hypothesis), are included in the hypothesis 

vector, then GLSF  is formally equivalent to the statistic developed by Browne (1977) 

(although the computational formulas differ, and the relative computational efficiency 

depends on a particular application).  

Computational Considerations 

Interpreted literally, the equations for the chi-square statistics discussed above 

would appear to require, for larger problems, very large amounts of computational space. 
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The difficulties stem from the fact that as the order of a correlation matrix increases, the 

number of non-redundant elements grows very rapidly. For example, a 20 20×  

correlation matrix has 190 non-redundant correlations. If A = 3, and all correlations are 

involved in the null hypothesis, the matrix YYYY would then be a block diagonal matrix of 

order 570 570× . Each of the three 190 190×  blocks would contain 17,955 non-redundant 

elements. Inverting such a matrix involves significant computational effort. In view of 

such facts, it is important to consider methods for eliminating unnecessary computations.  

 Discussion of  all nontrivial aspects of computational optimization for pattern 

hypothesis tests is beyond the scope of this article. Below I consider aspects of 

optimization that are related primarily to the statistical theory discussed in this article, 

rather than the niceties of programming in any specific computer language. With respect 

to the latter, let us simply say that (1) some model matrices are sparse, and can be stored 

very efficiently (as we illustrate below in the case of DDDD),  and (2) computational efficiency 

can be improved in many places by careful employment of specialized routines for storing 

and manipulating symmetric matrices. 

 We will now discuss theoretical developments that are particularly relevant to 

computational efficiency. First, we point out a  distinction between the theory for GLS 

procedures as presented here, and in Steiger (1980b. 1980c), and that given by Browne 

(1977). In Browne's (1977) derivation of single sample procedures, the vector r r r r is 

assumed to hold all ( )2 / 2p p+  elements of RRRR. The theory presented in this article, and in 

Steiger (1980b, 1980c) requires only the restricted elements of R R R R to be included in rrrr, 

although unrestricted elements may be included.  For some types of hypotheses, this 

difference can lead to substantial differences in computational effort.  On the other hand, 

Browne (1977) contained computational simplifications that can yield greater efficiency 
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than the methods discussed here when many of the elements of the correlation matrix are 

constrained. 

 Jennrich (1970) presented methods that allowed the computation of ˆ −1−1−1−1ΩΩΩΩ  without 

directly inverting Ω̂ΩΩΩ , but instead by inverting two p p×  matrices. This method can 

produce substantial gains in computing time.  The method, however, assumed that all 

elements of the correlation matrix being tested are included in ρρρρ , and, moreover, only 

handled the normal theory case, so that they were not applicable to the method discussed 

in the preceding paragraph.  In what follows, I present an alternative approach that allows 

computation of ˆ −1−1−1−1ΩΩΩΩ  without directly inverting Ω̂ΩΩΩ , but which can be applied either in the 

normal theory or ADF case, and whether or not all correlations are included in ρρρρ .   

 In the earlier development in this article, I assumed for clarity of exposition that 

the correlations included in the null hypothesis specification were sorted by group, i.e., all 

elements from group 1 were first, followed by elements from group 2, etc.  However,  this 

assumption is actually not necessary. Two simple adjustments in the notation are needed: 

(a) the matrix N in Equation 19 is redefined to be a diagonal matrix with each diagonal 

element the sample size N (instead of n = N – 1) on which the corresponding correlation 

is based, and (b) the matrix ΨΨΨΨ  has elements that are zero if the correlations come from 

different samples (since they are then independent), and otherwise are as defined 

previously. Formulas for the estimators and test statistics are otherwise unchanged.  

 I now demonstrate how GLS estimators, and the associated chi-square statistic, 

may be obtained without inverting the estimated covariance matrix of correlations (or 

transformed correlations.) Rather than discuss equations specific to the three chi-square 

statistics we have discussed, we will present these results in terms of  a general 

computational form applicable, with minimal effort, to all three cases. To develop the 

results, we will need the following 
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Lemma (Khatri, 1966). Suppose that S is a p p×  positive definite matrix. If A  

(of order p m× ) and B (of order ( )p p m× − ) are of ranks m and ( )p m− , 

respectively, and if  

 ′ =B A 0  (41) 

then 

 ( ) ( ) 11 1 1 1 1−− − − − −′ ′ ′ ′= −B B SB B S S A A S A A S  (42) 

Recall that expressions for GLS estimators are of the form 

 ( ) ( )11 1 *ˆ
−− −′ ′= −U U rγ ∆ ∆ ∆ ργ ∆ ∆ ∆ ργ ∆ ∆ ∆ ργ ∆ ∆ ∆ ρ  (43)  

This can be re-written as 

 ( ) ( ){ } ( )11 1 1 *ˆ
−− − −′ ′ ′ ′= −U U rγ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ργ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ργ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ργ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ρ  (44) 

which, upon application of Khatri's (1966) Lemma, becomes 

 
( ) ( ){ } ( )
( ) ( ){ }

1 1 1 *

1 *

ˆ − − −

−

′ ′ ′ ′= − −

′ ′= − −

U U U U U r

r z

γ ∆ ∆ ∆ Φ Φ Φ Φ ργ ∆ ∆ ∆ Φ Φ Φ Φ ργ ∆ ∆ ∆ Φ Φ Φ Φ ργ ∆ ∆ ∆ Φ Φ Φ Φ ρ

∆ ∆ ∆ ρ∆ ∆ ∆ ρ∆ ∆ ∆ ρ∆ ∆ ∆ ρ
 (45) 

where  

 ( ) ( )1 *−′ ′= −z U U rΦ Φ Φ Φ ρΦ Φ Φ Φ ρΦ Φ Φ Φ ρΦ Φ Φ Φ ρ  (46) 

and FFFF is a matrix which satisfies Equation 34 with respect to DDDD, i.e., if DDDD is of order 

V q× , then FFFF is of order ( )V V q× − , and  
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 ′ = 0Φ ∆Φ ∆Φ ∆Φ ∆  (47) 

Equation 45 shows that GLS estimators can be computed without inverting the matrix U.  

It also shows that GLS estimators may be thought of as OLS estimators based on an 

“adjusted” correlation matrix.  

An efficient computational approach is as follows:  

1. Construct the matrix FFFF.  

 2. Compute the matrix ′UΦ ΦΦ ΦΦ ΦΦ Φ . To avoid unnecessary multiplication by zeroes in the 

A-sample case, take advantage of the block diagonal structure of U by row-

partitioning FFFF into A submatrices of order ( )iv V q× − . Then use the equality 

 
1

A

i i i
i=

′ ′= ∑U UΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ  (48) 

 3. Solve the linear equation system  

 ( )′ ′= =U y r bΦ Φ ΦΦ Φ ΦΦ Φ ΦΦ Φ Φ  (49) 

for y.   

Then compute z in Equation 46 as =z U yΦΦΦΦ . 

 4.   Compute the vector *− −r zρρρρ . 

 5.   Compute γ̂γγγ  from Equation 45, keeping in mind that neither the matrix DDDD, nor, for 

that matter ( ) 1−′ ′∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆ , need be computed or stored in matrix form, since D D D D has at 

most one nonzero element in each row, and that nonzero element is always 1. An 

efficient internal representation of D D D D could be an integer vector containing the column 

index of the 1 in each row of D D D D (or a zero if the row is null).  
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In the course of computing γ̂γγγ , we obtain the quantities y and b. From these, the 2
V q−�  test 

statistic may be obtained using the computational form 

 

( ) ( )
( ) ( ){ } ( ){ }( )
( ) ( ){ }( )
( ) ( ) ( )

* 1 *

1 1* 1 1 1 1 1 *

1* 1 1 1 1 *

1* *

ˆ ˆ ˆF −

− −− − − − −

−− − − −

−

′
= − − − −

′
′ ′ ′ ′= − − − −

′
′ ′= − − −

′
′ ′= − −

′=

r U r

r I U U U I U U r

r U U U U r

r U r

b y

ρ ∆γ ρ ∆γρ ∆γ ρ ∆γρ ∆γ ρ ∆γρ ∆γ ρ ∆γ

ρ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ρρ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ρρ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ρρ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ρ

ρ ∆ ∆ ∆ ∆ ρρ ∆ ∆ ∆ ∆ ρρ ∆ ∆ ∆ ∆ ρρ ∆ ∆ ∆ ∆ ρ

ρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρ

 (50) 

A consistent estimate of the asymptotic variances and covariances of the parameter 

estimates can be obtained without inverting U using the following result: 

 

( ) ( ) ( ){ }( )

( ) ( ){ }( )

( )

11 11

1 1 1

1

ˆ ˆCov ,

,

^ −− −−

− − −

−

′ ′ ′ ′ ′ ′ ′= =

′ ′ ′ ′ ′ ′= −

′ ′ ′= −

U

U U U U

G UG H U H

Θ γ γ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆Θ γ γ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆Θ γ γ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆Θ γ γ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ Φ Φ Φ Φ ∆ ∆ ∆∆ ∆ ∆ Φ Φ Φ Φ ∆ ∆ ∆∆ ∆ ∆ Φ Φ Φ Φ ∆ ∆ ∆∆ ∆ ∆ Φ Φ Φ Φ ∆ ∆ ∆

Φ ΦΦ ΦΦ ΦΦ Φ

 (51) 

where ( ) 1−′=G ∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆ and ′=H G UΦΦΦΦ .  Estimated standard errors for the estimates in γ̂γγγ  

can be obtained by taking the square root of corresponding diagonal elements of ΘΘΘΘ . 

We next use the preceding results to demonstrate that elimination of the unconstrained 

correlations from the null hypothesis specification has no effect on (a) the chi-square test 

statistic, or (b) the estimates of the constrained correlations. First, we need the following 

 Lemma. If  

 1 =  
 

0

0 I

∆∆∆∆
∆∆∆∆  (52) 
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and if  

 ′ = 0Φ ∆Φ ∆Φ ∆Φ ∆  (53) 

then 

 1 =  
 0

ΦΦΦΦ
ΦΦΦΦ  (54) 

where 1
′ = 0Φ ∆Φ ∆Φ ∆Φ ∆ . 

 Proof.  Define  

 1

2

 =  
 

ΦΦΦΦ
ΦΦΦΦ

ΦΦΦΦ
 (55) 

Then [ ]1 1 2
 ′ ′′ = = =  0 0 0Φ ∆ Φ ∆ ΦΦ ∆ Φ ∆ ΦΦ ∆ Φ ∆ ΦΦ ∆ Φ ∆ Φ , and hence 1

′ = 0Φ ∆Φ ∆Φ ∆Φ ∆  and 2 = 0ΦΦΦΦ  &  

Suppose we consider a case where some of the correlations in the null hypothesis are not 

constrained to be equal to any other correlation or to specific numerical values.  We 

partition ρρρρ  as  

 1

2

 =  
 

ρ
ρ

ρ
 (56) 

 so that all constrained correlations are in 1ρρρρ , and remaining correlations are in 2222ρρρρ .  In 

that case,  since each unconstrained correlation will be equal to a unique element of γγγγ , ∆∆∆∆  

will be of the form  

 1 =  
 

0

0 I

∆∆∆∆
∆∆∆∆  (57) 

and the null hypothesis may be partitioned as  



Comparing Correlations 

Page 24 

   

 1      = = +      
      

0

0 I 0

∗∗∗∗
1 11 11 11 1∗∗∗∗ 1111

2 22 22 22 2

ρ γρ γρ γρ γ∆∆∆∆ ρρρρρ = ∆γ + ρρ = ∆γ + ρρ = ∆γ + ρρ = ∆γ + ρ
ρ γρ γρ γρ γ

 (58) 

 

If U (in Equations 43–51) is partitioned to correspond with our partition of ρρρρ , i.e.,   

 11 12

21 22

 =  
 

U U
U

U U
, 

and one applies the facts (easily established by substitution) that 

 ( ) ( ) 1

1

−
−

 ′ ′ =
 
 

0

0 I

1 11 11 11 1∆ ∆∆ ∆∆ ∆∆ ∆∆ ∆∆ ∆∆ ∆∆ ∆ , (59) 

 1) ( )′′ − = −r r∗ ∗∗ ∗∗ ∗∗ ∗
1 11 11 11 1Φ ( ρ Φ ρΦ ( ρ Φ ρΦ ( ρ Φ ρΦ ( ρ Φ ρ , (60) 

and 

 11
′′U U1 11 11 11 1Φ Φ = Φ ΦΦ Φ = Φ ΦΦ Φ = Φ ΦΦ Φ = Φ Φ  (61) 

then simple substitution and recombination, via Equation 45, establishes that  

 ( ) 1
1 1

11 11 1ˆ ( )
−

− −′ ′= −U U r ∗∗∗∗
1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1γ ∆ ∆ ∆ ργ ∆ ∆ ∆ ργ ∆ ∆ ∆ ργ ∆ ∆ ∆ ρ  (62) 

and that the chi-square test statistic is 

 ( ) ( )1
1 11 1

ˆ ˆ ˆF −′
= − − − −r U r∗ ∗∗ ∗∗ ∗∗ ∗

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1ρ ∆ γ ρ ∆ γρ ∆ γ ρ ∆ γρ ∆ γ ρ ∆ γρ ∆ γ ρ ∆ γ  (63) 

For example, to prove Equation 62, we combine Equations 45, 46, and 59, obtaining 
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( ) ( ){ }
( ) ( )

( ) ( )

1 *

1
1 1

2 2

1
1 1

2 2

ˆ
ˆ

ˆ
−

−

−

  ′ ′= − − 
 

   − −′ ′=   
   −   
 ′ ′ − −

=  
 − 

r z

r z0

0 I r z

r z

r z

1111

2222

∗∗∗∗
11111 1 11 1 11 1 11 1 1

∗∗∗∗
1 1 1 11 1 1 11 1 1 11 1 1 1

γγγγ
γ = ∆ ∆ ∆ ργ = ∆ ∆ ∆ ργ = ∆ ∆ ∆ ργ = ∆ ∆ ∆ ρ

γγγγ

ρρρρ∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆

∆ ∆ ∆ ρ∆ ∆ ∆ ρ∆ ∆ ∆ ρ∆ ∆ ∆ ρ

 (64) 

with 

 

( ) ( )

( ) ( )

( ) ( )

1
1

1 11 11 1

1
1 1 1 1

11 11 11 11 11 1

1
1 1

11 11 1

−
−

−
− − − −

−
− −

′ ′= −

 ′ ′= − − 
 

 ′ ′= − − 
 

z U U r

U U U U U r

I U U r

∗∗∗∗
1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1

∗∗∗∗
1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1

∗∗∗∗
1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1

Φ Φ Φ Φ ρΦ Φ Φ Φ ρΦ Φ Φ Φ ρΦ Φ Φ Φ ρ

∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ

∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ

 (65) 

and 

 
( ) ( )

( ) ( )

1

2 21 11 1

1
1 1 1

21 11 11 11 1

−

−
− − −

′ ′= −

 ′ ′= − − 
 

z U U r

U U I U U r

∗∗∗∗
1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1

∗∗∗∗
1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1

Φ Φ Φ Φ ρΦ Φ Φ Φ ρΦ Φ Φ Φ ρΦ Φ Φ Φ ρ

∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ∆ ∆ ∆ ∆ ρ
 (66) 

Combining Equations 64–66, we find  

 
( )1

2 2 2 21 11 1

1
2 21 11 1

ˆ ˆ

ˆ

−

−

= − = − − −

= −

r z r U U r

r U U e

∗∗∗∗
2 1 1 12 1 1 12 1 1 12 1 1 1γ ∆ γ ργ ∆ γ ργ ∆ γ ργ ∆ γ ρ

 (67) 

where 1ê  is the vector of residual correlations, i.e., the difference between the estimates 

and the sample correlations. 

The upper partition of Equation 64, when compared to Equation 45, demonstrates 

that adding unconstrained correlations to the hypothesis specification does not affect the 
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GLS estimates of the constrained correlations in ˆ1111γγγγ .  It also demonstrates that, in a single 

sample, GLS estimates may be thought of as OLS estimates computed on an “adjusted” 

set of sample correlations.  When the adjustment is zero, GLS and OLS estimates are 

identical. 

The fact that the chi-square statistic is unchanged by the addition of unconstrained 

correlations may be proven in a similar manner. From Equations 50, 60, and 61 we have 

 
( ) ( ) ( )
( ) ( ) ( )

1

1
1

1 11 1

F̂
−

−
−

′ ′ ′= − −

′ ′ ′= − −

r U r

r U r

∗ ∗∗ ∗∗ ∗∗ ∗

∗ ∗∗ ∗∗ ∗∗ ∗
1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1

ρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρ

ρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρρ Φ Φ Φ Φ ρ
 (68) 

Comparing this to the penultimate line of Equation 50 establishes that the chi-square 

statistic calculated with unconstrained correlations included in the hypothesis statement is 

equivalent to the statistic without the correlations included. 

 

Software for Performing Pattern Hypothesis Tests 

There are a number of computer software programs specifically designed to test 

correlational pattern hypotheses.  Some key points of differentiation are (1) whether the 

software can perform ADF as well as normal theory tests, and (2) whether the software 

can perform tests on more than one sample.   

  MULTICORR (Steiger, 1979) is a FORTRAN program for testing any pattern 

hypothesis on a single sample. MULTICORR is freeware, and employs the Fisher 

transform, as discussed in Steiger (1980a, 1980b).  The program is available for 

download from the website http://www.interchange.ubc.ca/steiger/homepage.htm, or by 

email from the author.  MULTICORR has some serious limitations, in that it is currently 

designed to operate on single samples, and is limited to correlation matrices no larger 

than 18 18× . 
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 FITCORS (Mels, 2000) is a general program for fitting correlational structures of 

the form  

 0 :H mρ = (θ)ρ = (θ)ρ = (θ)ρ = (θ)  (69) 

where θθθθ  is a vector of free parameters, and m is a vector model function. Clearly, 

Equation 69 includes Equation 3 as a special case, so FITCORS can be used to fit 

correlational models that are not pattern hypothesis tests.  However, for models that are 

neither path models nor correlational pattern hypotheses, the user is required to write and 

compile a function implementing the model function m .  FITCORS implements a variety 

of estimation methods, including TSGLS, GLS, ADF, and TSADF chi-square statistics.  

The program runs under Windows, and is available from the author, Gerhard Mels, whose 

email address at this writing is mels@ssicentral.com.  The program currently performs 

general tests on one sample only. 

 WBCORR(Within-Between CORRlational Tests) for Mathematica is a freeware 

Mathematica package for performing correlational pattern hypothesis tests in one or more 

samples with possibly unequal sample sizes.   The program, which requires the well-

known symbolic algebra program Mathematica, includes options for analyzing raw data 

or correlation matrices, and implements TSGLS, GLS, ADF, and TSADF chi-square 

statistics.  WBCORR is available from the first author by email, or may be downloaded 

from his website. 

 Other approaches to performing correlational pattern hypotheses are available 

besides those discussed above. For example, correlational pattern hypothesis tests may be 

performed with any common covariance structure analysis software program by 

implementing the method discussed by McDonald (1975). Although these programs are 

designed primarily to test hypotheses on a covariance matrix, they can be employed to 
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test correlational pattern hypotheses.  In particular, my own program SEPATH (part of 

Statistica) can perform correlational pattern hypotheses directly on one or more samples, 

by simply selecting “Analyze Correlations” as a program option, and Michael Browne’s 

RAMONA (part of Systat) offers similar capabilities for a single sample.  Correlation-

based methods, i.e., those based on the sampling theory of a correlation matrix, have 

somewhat different performance characteristics than covariance-based procedures. For a 

comparison of the relative performance of covariance-based and correlation-based 

methods for analyzing correlational pattern hypothesis, see Monte Carlo experiments by 

Steiger (1980b), Fouladi(1996, 2000), and Mels(2000).  

 

Some Numerical Examples 

The following examples illustrate some of the procedures that can be performed using the 

theory in this paper.  All these tests can be performed using WBCORR. After loading in 

the package to Mathematica with the command “<<wbcorr.m”, the user simply inputs 

data, specifies a hypothesis, and invokes a single command. 

 

Single Sample Tests 

In this section, we examine hypothesis tests that involve only a single group. The 

first 3 examples will be based on the raw data shown in Table 1.  These data are 25 

pseudorandom samples of 6 independent variates all having a lognormal (0,1) 

distribution.  The data were rounded at two decimals, and the numbers actually processed 

are exactly as shown in the table. Assume in these examples that the 6 variables are all 

observed on the same group of subjects. 

Equicorrelation Hypothesis.  Suppose that you hypothesize that the first 3 

variables have an equicorrelation structure. This structural hypothesis assumes that all 
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off-diagonal elements of the correlation matrix are equal, so the null hypothesis, in the 

notation of Equation 3, is represented as follows (superscripts being unnecessary when 

there is only one sample.) 

 [ ]

1
21

1
31

1
32

1 0 0

1 0 0

1 0 0

ρ γ
ρ γ γ

γρ

                    = + = +                         

1111

1 11 11 11 1

1111

 (70) 

To test this hypothesis with WBCORR, one codes the left and right sides of the equation 

into a single hypothesis matrix of the form 

 

1 2 1 1 0

1 3 1 1 0

1 3 2 1 0

 
 
 
  

 (71) 

Each row of the hypothesis matrix represents a statement about a correlation that is 

constrained by the null hypothesis.  The statement is of the form  

 group, row, column, parameter tag, fixed value  (72) 

If the correlation is fixed at a specific numerical value, the fixed value is entered as the 
∗∗∗∗ρρρρ  value, (and the parameter tag is 0).  If the parameter tag is nonzero, then the fixed 

value is not used, and is generally entered as zero. 

 If the raw data are read into Mathematica and assigned to a matrix called “data”, 

and the above hypothesis matrix is assigned to a matrix called 

“equicorrelationHypothesis,” testing the model requires entry of the single command 

“ComputeChiSquare[{data},equicorrelationHypothesis, {25}, DataType->RawData]”. 

WBCORR responds by producing output that describes the results of hypothesis testing.  

The typical Mathematica session performing computation for the above problem is shown 
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in Appendix 1.  Scanning the output, we see a number of items that are common to such 

analyses.  After printing the input correlation matrix, WBCORR generates OLS estimates 

of the entire input correlation matrix. Note that the estimates for 21ρ , 31ρ , and 32ρ  are all 

equal to a common value, i.e., .0642778. The next output section includes a list of 

parameter estimates for the constrained free parameters. In this case, three correlations are 

constrained to be equal, and have a parameter tag of 1. The  two-stage GLS estimate for 

the parameter is identical to the OLS estimate. The chi-square test for the null hypothesis, 

reported under “Significance Test Results,”  is not rejected, and so remains tenable. How 

that the tests for multivariate normality based on the Mardia (1970) indices of 

multivariate skewness and kurtosis are both statistically significant, indicating that the 

default test (which assumes multivariate normality) may be inaccurate.  In such a 

situation, it is advisable to compute an ADF version of the test statistic. Re-analysis with 

the two-stage ADF test statistic yields the results shown in Part b of Appendix 1.  Three 

important changes can be observed when comparing the two-stage ADF and two-stage 

GLS results.  First, the parameter estimate for the common correlation has changes, and 

so has its standard error. Second, the value of the chi-square statistic and its associated 

probability level have changed. In this case, the statistical decision remains the same, i.e., 

not to reject the null hypothesis.  However, in many cases shifting to an ADF statistic can 

change the outcome of a significance test.  Third, the parameter estimate for parameter 1 

is no longer equal to the corresponding OLS estimate.   

 One can also employ a range of estimation methods, including two-stage GLS and 

two-stage ADF,  to test the equicorrelation matrix with the freeware program FITCORS 

(Mels, 2000). FITCORS, however, employs a somewhat different command language that 

represents the correlation matrix as a path diagram.  For example, the equicorrelation 

hypothesis is represented as follows: 
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MANIFEST 
X1 X2 X3 
MODEL 
X1 <--> (X1, 0, 1.0) (X2, 1, *) (X3, 1, *)  / 
X2 <--> (X2, 0, 1.0) (X3, 1, *) ; 
END OF MODEL 

The code in the first line after “MODEL” establishes a fixed value of 1.0 for the 

correlation between X1 and itself, and a free parameter with an arbitrary starting value for 

the correlation between X1 and X2, and the correlation between X1 and X3. The code in 

the second line of the model specification establishes a fixed value of 1.0 for the 

correlation between X2 and itself, and a free parameter with a tag of 1 for the correlation 

between X1 and X3.  

Equality of Two Dependent Correlations. A common pattern hypothesis is to test 

whether two predictor variables predict a criterion equally well.  This is a hypothesis of 

the form 

 21 32 1ρ ρ ρ= =  (73) 

To test such a hypothesis with WBCORR, one uses the following hypothesis matrix 

 
1 2 1 1 0

1 3 2 1 0

 
 
 

 (74) 

Mathematica input and output for such a hypothesis test using the two-stage ADF 

estimation method are shown in Appendix 2. 

Perfect Circumplex (Symmetric Circulant) Structure.  A perfect circumplex, or 

symmetric circulant hypothesis (Wiggins, Steiger, & Gaelick, 1981) implies that 

correlations are exactly equal in diagonal strips, and is a special case of the circumplex 
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model discussed by Browne (1992).  For 6 variables, this model states that the correlation 

matrix is of the form   

 

1

2 1

3 2 1

2 3 2 1

1 2 3 2 1

1

1

1

1

1

1

ρ
ρ ρ
ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ ρ

 
 
 
 

Ρ =  
 
 
 
  

 (75) 

The WBCORR hypothesis matrix, and output for this model are shown in Appendix 3. 

For replicability, we use a random number seed (i.e., 123). Note that, in this case, both 

tests for multivariate normality have p-values close to .50, indicating that there is no 

evidence to reject multivariate normality. Using the two-stage GLS estimation method, 

we obtain a chi-square test for the circumplex hypothesis that is not significant, indicating 

that the hypothesis of a perfect circumplex remains tenable for these data. 

FITCORS can also test this hypothesis, using the following model statements: 
 
X1  <--> (X1, 0, 1.0) (X2, 1, *) (X3, 2, *) (X4, 3, *) / 
X1  <--> (X5, 4, *) (X6, 5, *) / 
X2  <--> (X2, 0, 1.0) (X3, 1, *) (X4, 2, *) (X5, 3, *) / 
X2  <--> (X6, 4, *) / 
X3  <--> (X3, 0, 1.0) (X4, 1, *) (X5, 2, *) (X6, 3, *) / 
X4  <--> (X4, 0, 1.0) (X5, 1, *) (X6, 2, *) / 
X5  <--> (X5, 0, 1.0) (X6, 1, *) / 
X6  <--> (X6, 0, 1.0) ;   

In this example, we have tested the very highly constrained hypothesis of perfect 

circumplex structure. More general circumplex models that are often of significant 

interest in practical applications are discussed in detail by Browne (1992).  These models 

require software that can test structural models that are more general than a pattern 

hypothesis. A freeware  computer program (CIRCUM) for fitting these more general 

models may be downloaded from the author’s website. 
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Equality of Correlation Matrices Over Time.  If a set of k variables is observed m 

times on N individuals, the resulting correlation matrix may be viewed as N observations 

on km dependent variables.  Equality of correlation matrices over time may then be tested 

by constraining the correlations across the m occasions to be equal to each other.   

Consider, for example, the correlations among 3 variables measured on the same 

individuals on two occasions.  In this case, 1 2 3, , and X X X  represent the three variables 

on the first occasion, while 4X  through 6X  represent the same 3 variables on the second 

measurement occasion.  Consequently, the hypothesis that the correlations among the 3 

variables have not changed over time is equivalent to the following: 

 0 21 54 1 31 64 2 32 65 3: , ,H ρ ρ γ ρ ρ γ ρ ρ γ= = = = = =  (76) 

In WBCORR, we express such a hypothesis with the following hypothesis matrix: 

 

1 2 1 1 0

1 3 1 2 0

1 3 2 3 0

1 5 4 1 0

1 6 4 2 0

1 6 5 3 0

 
 
 
 
 
 
 
 
  

 

A sample correlation matrix representing measurements on 3 variables on two 

separate occasions will be of order 6 6×  correlation matrix, and may be analyzed with 

WBCORR, MULTICORR, or FITCORS to test the hypothesis of equality of correlation 

matrices over time.  For brevity, we do not show computer output and input files here 

(although they are distributed with the WBCORR software). 

 

Multiple Sample Tests 
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In this section, we examine hypothesis tests performed on two or more correlation 

matrices sampled from independent groups. For simplicity, we shall confine our 

numerical examples to two correlation matrices, since the extension to more than two 

groups is straightforward. 

Equality of Independent Correlation Matrices.  Table 3 shows two correlation 

matrices, representing correlations between GPA and SAT-Verbal and SAT-Math scores 

for two groups of unequal size.  To test whether the two correlation matrices are equal, 

we employ the following hypothesis matrix with WBCORR: 

1 2 1 1 0

1 3 1 2 0

1 3 2 3 0

2 2 1 1 0

2 3 1 2 0

2 3 2 3 0

 
 
 
 
 
 
 
 
  

 

The first three lines of the hypothesis matrix simply establish that the elements of 

the correlation matrix for the first group are all free parameters, with parameter tags 1,2, 

and 3.  The next three lines constrain the elements of the correlation matrix in the second 

group to be equal to those in the first group.  WBCORR input and output for the example 

are shown in Appendix 4. 

 

Equality of Predictor-Criterion Correlations in Two Groups. Suppose that, rather 

than comparing all the correlations for the data in Table 3, we wished to compare only the 

predictor-criterion correlations.  For example, we might wish to test whether the 

correlations between the predictors (SAT-Verbal and SAT-Math) and the criterion (GPA) 

differed in the two groups.  In this case, the hypothesis matrix is 
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1 2 1 1 0

1 3 1 2 0

2 2 1 1 0

2 3 1 2 0

 
 
 
 
 
 

 

The TSGLS chi-square statistic is 7.57 with 2 degrees of freedom (p = .022721), and is 

significant at the .05 level.  For brevity, we do not show computer output and input files 

here (although they are distributed with the WBCORR software). 

Equality of Circumplex Structures in Two Groups.  One can test the simultaneous 

hypothesis that two groups have the same correlation matrix and that the correlation 

matrix is a perfect circumplex.  In Appendix 5, we present Input and Output for a 

demonstration of such calculations, using WBCORR.  In the first part of the 

demonstration, we use the random number generation capabilities of Mathematica to 

produce two sets of data, with different sample sizes, both of which fit the same 

circumplex structure perfectly.  In the second part of the demonstration, we test the 

hypothesis that the two groups have identical circumplex structure, i.e., have correlation 

matrices that are the same and that fit a circumplex perfectly.  Not surprisingly, the chi-

square statistic is not significant. 

 

Conclusions 

 In this paper, I have presented general theory for multiple-sample hypothesis tests 

on correlations. Using this theory, between and/or within-sample hypotheses about 

equality of correlations can be tested. Much of the theory presented in this paper may be 

described as a straightforward complement to work by Browne (1977, 1984),  McDonald 

(1975), Steiger (1980b), and Steiger and Hakstian (1982). However, the Mathematica 

software implementation in WBCORR presents a simple, unified method for performing 

the tests on virtually any number of groups with raw data or correlation matrix input.  In 
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addition, researchers may employ WBCORR with Mathematica’s Monte Carlo sampling 

capabilities to assess the performance characteristics of these test statistics in any 

anticipated application.
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Table 1 

Sample Data Set 1 

 

1X  2X  3X  4X  5X  6X  

1.24 2.61 0.26 1.05 7.55 0.20 

0.28 2.36 1.19 1.66 0.47 0.46 

0.37 0.82 3.23 0.12 4.57 1.84 

0.11 5.73 3.04 1.04 0.38 0.35 

10.75 2.66 2.62 0.29 4.12 0.38 

0.21 0.27 0.42 1.07 1.41 0.24 

0.95 0.83 1.00 1.00 1.35 0.90 

0.78 0.87 6.99 3.01 2.34 0.41 

0.65 0.80 0.70 0.60 2.38 0.49 

0.57 0.28 0.55 0.57 0.20 4.60 

2.99 0.42 0.34 2.80 0.36 0.67 

2.87 1.41 0.49 0.13 3.18 0.53 

4.87 2.72 0.39 1.35 1.52 1.89 

0.83 2.09 1.00 0.39 0.82 1.80 

0.32 3.28 1.91 1.13 1.47 1.44 

0.59 5.06 1.07 0.40 3.25 0.57 

0.14 0.22 0.25 0.64 0.53 1.07 

1.67 1.83 0.85 0.15 0.89 2.39 

1.86 0.52 0.14 2.94 1.40 0.97 

0.69 0.19 0.46 1.39 4.32 1.51 

0.8 4.00 1.90 2.24 2.77 1.31 

0.66 0.51 4.52 0.57 4.84 0.82 

0.35 0.27 0.78 0.37 0.25 0.72 

1.91 1.02 4.32 0.59 1.05 2.35 

0.43 0.41 1.67 1.43 0.62 2.64 
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Table 2 

Correlations for 3 Variables on Two Occasions (N=245) 

 

Time 1 Time 2 

1X  2X  3X  4X  5X  6X  

1.00 0.20 0.25 0.44 0.38 0.41 

0.20 1.00 0.37 0.33 0.29 0.32 

0.25 0.37 1.00 0.29 0.22 0.28 

0.44 0.33 0.29 1.00 0.41 0.36 

0.38 0.29 0.22 0.41 1.00 0.49 

0.41 0.32 0.28 0.36 0.49 1.00 
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Table 3 

Correlations Between 3 Variables in Two Groups1 

 

 GPA SAT-V SAT-M 

GPA 1.00 0.44 0.38 

SAT-V 0.31 1.00 0.42 

SAT-M 0.29 0.24 1.00 

                                                 

1 Correlations for Group 1, N = 521, above the diagonal.  Correlations for Group 2, N = 644, below the 

diagonal. 



Comparing Correlations 

Page 40 

   

Appendix 1 

Input and Output for Equicorrelation Hypothesis Example. 

Part a. Two-stage GLS Analysis 

Preliminary Input Lines:  

In[1]:= << wbcorr.m

In[2]:= data = Import@"EquicorrelationData.csv"D; MatrixForm@dataD

Out[2]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1.24 2.61 0.26 1.05 7.55 0.2
0.28 2.36 1.19 1.66 0.47 0.46

0.37 0.82 3.23 0.12 4.57 1.84
0.11 5.73 3.04 1.04 0.38 0.35
10.75 2.66 2.62 0.29 4.12 0.38
0.21 0.27 0.42 1.07 1.41 0.24
0.95 0.83 1. 1. 1.35 0.9
0.78 0.87 6.99 3.01 2.34 0.41

0.65 0.8 0.7 0.6 2.38 0.49
0.57 0.28 0.55 0.57 0.2 4.6
2.99 0.42 0.34 2.8 0.36 0.67
2.87 1.41 0.49 0.13 3.18 0.53
4.87 2.72 0.39 1.35 1.52 1.89

0.83 2.09 1. 0.39 0.82 1.8
0.32 3.28 1.91 1.13 1.47 1.44
0.59 5.06 1.07 0.4 3.25 0.57
0.14 0.22 0.25 0.64 0.53 1.07
1.67 1.83 0.85 0.15 0.89 2.39

1.86 0.52 0.14 2.94 1.4 0.97
0.69 0.19 0.46 1.39 4.32 1.51
0.8 4. 1.9 2.24 2.77 1.31
0.66 0.51 4.52 0.57 4.84 0.82
0.35 0.27 0.78 0.37 0.25 0.72

1.91 1.02 4.32 0.59 1.05 2.35
0.43 0.41 1.67 1.43 0.62 2.64

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

In[3]:= equicorrelationHypothesis =
i

k

jjjjjjj

1 2 1 1 0
1 3 1 1 0
1 3 2 1 0

y

{

zzzzzzz;

 

 



Command Line and Output: 

In[4]:= ComputeChiSquare@8data<, equicorrelationHypothesis, 825<,
DataType Ï RawDataD

WBCORR Output

Hypothesis Matrix

Group Row Column Parameter Tag Fixed Value
1 2 1 1 0
1 3 1 1 0
1 3 2 1 0

Input Correlation Matrix 1 Sample Size = 25

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.108968 0.00694539 -0.0735271 0.195968 -0.116128
0.108968 1. 0.0769198 -0.0665498 0.107224 -0.239101
0.00694539 0.0769198 1. 0.128691 0.150023 -0.0691065
-0.0735271 -0.0665498 0.128691 1. -0.152004 -0.19305
0.195968 0.107224 0.150023 -0.152004 1. -0.322708
-0.116128 -0.239101 -0.0691065 -0.19305 -0.322708 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

OLS Estimates of Correlation Matrix 1

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.0642778 0.0642778 -0.0735271 0.195968 -0.116128
0.0642778 1. 0.0642778 -0.0665498 0.107224 -0.239101
0.0642778 0.0642778 1. 0.128691 0.150023 -0.0691065
-0.0735271 -0.0665498 0.128691 1. -0.152004 -0.19305
0.195968 0.107224 0.150023 -0.152004 1. -0.322708
-0.116128 -0.239101 -0.0691065 -0.19305 -0.322708 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

2-Stage GLS Parameter Estimates

Parameter Tag Estimate Standard Error
1 0.0642778 0.124453

Significance Test Results

Chi Square df plevel
0.140485 2 0.932168

Assessment of Multivariate Normality

Multivariate Skewness Chi Square df plevel

1 27.3963 114.151 56 7.3502Õ10-6

Multivariate Kurtosis Z plevel H2-tailedL
1 55.1678 2.77102 0.00558816
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Part b.  Two-Stage ADF Analysis 

Command Line and Output: 

 
In[5]:= ComputeChiSquare@8data<, equicorrelationHypothesis, 825<,

DataType Ï RawData, EstimationMethod Ï TSADF D

WBCORR Output

Hypothesis Matrix

Group Row Column Parameter Tag Fixed Value
1 2 1 1 0
1 3 1 1 0
1 3 2 1 0

Input Correlation Matrix 1 Sample Size = 25

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.108968 0.00694539 -0.0735271 0.195968 -0.116128
0.108968 1. 0.0769198 -0.0665498 0.107224 -0.239101
0.00694539 0.0769198 1. 0.128691 0.150023 -0.0691065
-0.0735271 -0.0665498 0.128691 1. -0.152004 -0.19305
0.195968 0.107224 0.150023 -0.152004 1. -0.322708
-0.116128 -0.239101 -0.0691065 -0.19305 -0.322708 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

OLS Estimates of Correlation Matrix 1

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.0642778 0.0642778 -0.0735271 0.195968 -0.116128
0.0642778 1. 0.0642778 -0.0665498 0.107224 -0.239101
0.0642778 0.0642778 1. 0.128691 0.150023 -0.0691065
-0.0735271 -0.0665498 0.128691 1. -0.152004 -0.19305
0.195968 0.107224 0.150023 -0.152004 1. -0.322708
-0.116128 -0.239101 -0.0691065 -0.19305 -0.322708 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

2-Stage ADF Parameter Estimates

Parameter Tag Estimate Standard Error
1 0.0806234 0.0942435

Significance Test Results

Chi Square df plevel
0.776573 2 0.678218

Assessment of Multivariate Normality

Multivariate Skewness Chi Square df plevel

1 27.3963 114.151 56 7.3502Õ10-6

Multivariate Kurtosis Z plevel H2-tailedL
1 55.1678 2.77102 0.00558816  
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Appendix 2 

Comparison of 2 Dependent Correlations 

Command Statements and Selected Output: 

<< wbcorr.m

data = Import@"EquicorrelationData.csv"D;

hypothesis = J
1 2 1 1 0
1 3 2 1 0

N;

ComputeChiSquare@8data<, hypothesis, 825<, DataType Ï RawData,

EstimationMethod Ï TSADFD

WBCORR Output

Hypothesis Matrix

Group Row Column Parameter Tag Fixed Value
1 2 1 1 0
1 3 2 1 0

Input Correlation Matrix 1 Sample Size = 25

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.108968 0.00694539 -0.0735271 0.195968 -0.116128
0.108968 1. 0.0769198 -0.0665498 0.107224 -0.239101
0.00694539 0.0769198 1. 0.128691 0.150023 -0.0691065
-0.0735271 -0.0665498 0.128691 1. -0.152004 -0.19305
0.195968 0.107224 0.150023 -0.152004 1. -0.322708
-0.116128 -0.239101 -0.0691065 -0.19305 -0.322708 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

OLS Estimates of Correlation Matrix 1

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.092944 0.00694539 -0.0735271 0.195968 -0.116128
0.092944 1. 0.092944 -0.0665498 0.107224 -0.239101
0.00694539 0.092944 1. 0.128691 0.150023 -0.0691065
-0.0735271 -0.0665498 0.128691 1. -0.152004 -0.19305
0.195968 0.107224 0.150023 -0.152004 1. -0.322708
-0.116128 -0.239101 -0.0691065 -0.19305 -0.322708 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

2-Stage ADF Parameter Estimates

Parameter Tag Estimate Standard Error
1 0.0945422 0.0946411

Significance Test Results

Chi Square df plevel
0.0190163 1 0.89032

Assessment of Multivariate Normality

Multivariate Skewness Chi Square df plevel

1 27.3963 114.151 56 7.3502Õ10-6

Multivariate Kurtosis Z plevel H2-tailedL
1 55.1678 2.77102 0.00558816
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Appendix 3 

Perfect Circumplex Hypothesis 

Preliminary Input Lines and Random Number Generation: 

In[1]:= << wbcorr.m

In[2]:= << Statistics`DescriptiveStatistics`

In[3]:= << Statistics`MultinormalDistribution`

In[4]:= << Statistics`MultiDescriptiveStatistics`

In[5]:= circumplexForm6x6 =

i

k

jjjjjjjjjjjjjjjjjjjjj

1 r1 r2 r3 r2 r1
r1 1 r1 r2 r3 r2
r2 r1 1 r1 r2 r3
r3 r2 r1 1 r1 r2
r2 r3 r2 r1 1 r1
r1 r2 r3 r2 r1 1

y

{

zzzzzzzzzzzzzzzzzzzzz

;

In[6]:= populationMatrix = circumplexForm6x6 ±. 8r3 Ï .2, r2 Ï .4, r1 Ï .6<;
MatrixForm@populationMatrixD

Out[6]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjj

1 0.6 0.4 0.2 0.4 0.6
0.6 1 0.6 0.4 0.2 0.4

0.4 0.6 1 0.6 0.4 0.2
0.2 0.4 0.6 1 0.6 0.4
0.4 0.2 0.4 0.6 1 0.6
0.6 0.4 0.2 0.4 0.6 1

y

{

zzzzzzzzzzzzzzzzzzzzz

In[7]:= populationDistribution =

MultinormalDistribution@80, 0, 0, 0, 0, 0<, populationMatrixD;

In[8]:= SeedRandom@123D

In[9]:= data = RandomArray@populationDistribution, 500D;
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In[10]:= R = CorrelationMatrix@dataD; MatrixForm@RD

Out[10]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.598603 0.417062 0.233987 0.415227 0.593991
0.598603 1. 0.620032 0.417526 0.187959 0.353934
0.417062 0.620032 1. 0.580356 0.396385 0.199658
0.233987 0.417526 0.580356 1. 0.616586 0.433602
0.415227 0.187959 0.396385 0.616586 1. 0.623676

0.593991 0.353934 0.199658 0.433602 0.623676 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

In[11]:= circumplexHypothesis =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 2 1 1 0
1 3 2 1 0
1 4 3 1 0
1 5 4 1 0
1 6 5 1 0

1 3 1 2 0
1 4 2 2 0
1 5 3 2 0
1 6 4 2 0
1 4 1 3 0
1 5 2 3 0

1 6 3 3 0
1 5 1 2 0
1 6 2 2 0
1 6 1 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

 

Command Line and Output: 

In[12]:= ComputeChiSquare@8data<, circumplexHypothesis, 8500<, DataType Ï RawDataD

WBCORR Output

Hypothesis Matrix

Group Row Column Parameter Tag Fixed Value
1 2 1 1 0
1 3 2 1 0
1 4 3 1 0
1 5 4 1 0
1 6 5 1 0
1 3 1 2 0
1 4 2 2 0
1 5 3 2 0
1 6 4 2 0
1 4 1 3 0
1 5 2 3 0
1 6 3 3 0
1 5 1 2 0
1 6 2 2 0
1 6 1 1 0  
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Input Correlation Matrix 1 Sample Size = 500

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.598603 0.417062 0.233987 0.415227 0.593991
0.598603 1. 0.620032 0.417526 0.187959 0.353934
0.417062 0.620032 1. 0.580356 0.396385 0.199658
0.233987 0.417526 0.580356 1. 0.616586 0.433602
0.415227 0.187959 0.396385 0.616586 1. 0.623676
0.593991 0.353934 0.199658 0.433602 0.623676 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

OLS Estimates of Correlation Matrix 1

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.605541 0.405623 0.207201 0.405623 0.605541
0.605541 1. 0.605541 0.405623 0.207201 0.405623
0.405623 0.605541 1. 0.605541 0.405623 0.207201
0.207201 0.405623 0.605541 1. 0.605541 0.405623
0.405623 0.207201 0.405623 0.605541 1. 0.605541
0.605541 0.405623 0.207201 0.405623 0.605541 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

2-Stage GLS Parameter Estimates

Parameter Tag Estimate Standard Error
1 0.605541 0.015424
2 0.405623 0.0245621
3 0.207201 0.0328644

Significance Test Results

Chi Square df plevel
6.82337 12 0.869062

Assessment of Multivariate Normality

Multivariate Skewness Chi Square df plevel
1 0.666646 55.5538 56 0.491696

Multivariate Kurtosis Z plevel H2-tailedL
1 48.3778 0.649714 0.515877
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Appendix 4 

Equality of Independent Correlation Matrices 

Input: 

In[1]:= << wbcorr.m

In[2]:= data1 =
i

k

jjjjjjj

1 .44 .38

.44 1 .42

.38 .42 1

y

{

zzzzzzz;

In[3]:= N1 = 521;

In[4]:= data2 =
i

k

jjjjjjj

1 .31 .29

.31 1 .24

.29 .24 1

y

{

zzzzzzz;

In[5]:= N2 = 644;

In[6]:= hypothesis =

i

k

jjjjjjjjjjjjjjjjjjjjj

1 2 1 1 0
1 3 1 2 0
1 3 2 3 0
2 2 1 1 0
2 3 1 2 0
2 3 2 3 0

y

{

zzzzzzzzzzzzzzzzzzzzz

;
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Command Line and Output: 

In[7]:= ComputeChiSquare@8data1, data2<, hypothesis, 8N1, N2<D

WBCORR Output

Hypothesis Matrix

Group Row Column Parameter Tag Fixed Value
1 2 1 1 0
1 3 1 2 0
1 3 2 3 0
2 2 1 1 0
2 3 1 2 0
2 3 2 3 0

Input Correlation Matrix 1 Sample Size = 521

i

k

jjjjjj

1 0.44 0.38
0.44 1 0.42
0.38 0.42 1

y

{

zzzzzz

Input Correlation Matrix 2 Sample Size = 644

i

k

jjjjjj

1 0.31 0.29
0.31 1 0.24
0.29 0.24 1

y

{

zzzzzz

OLS Estimates of Correlation Matrix 1

i

k

jjjjjj

1 0.368126 0.330241
0.368126 1 0.320482
0.330241 0.320482 1

y

{

zzzzzz

OLS Estimates of Correlation Matrix 2

i

k

jjjjjj

1 0.368126 0.330241
0.368126 1 0.320482
0.330241 0.320482 1

y

{

zzzzzz

2-Stage GLS Parameter Estimates

Parameter Tag Estimate Standard Error
1 0.368126 0.0253494
2 0.330241 0.0261252
3 0.320482 0.0263114

Significance Test Results

Chi Square df plevel
14.5103 3 0.00228681
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Appendix 5 

Equality of Circumplex Structures in Two Groups 

 

Preliminary Input Lines and Random Number Generation: 

 
In[1]:= << wbcorr.m

In[2]:= << Statistics`DescriptiveStatistics`

In[3]:= << Statistics`MultinormalDistribution`

In[4]:= << Statistics`MultiDescriptiveStatistics`

In[5]:= << LinearAlgebra`MatrixManipulation`

In[6]:= circumplexForm6x6 =

i

k

jjjjjjjjjjjjjjjjjjjjj

1 r1 r2 r3 r2 r1
r1 1 r1 r2 r3 r2
r2 r1 1 r1 r2 r3
r3 r2 r1 1 r1 r2
r2 r3 r2 r1 1 r1
r1 r2 r3 r2 r1 1

y

{

zzzzzzzzzzzzzzzzzzzzz

;

In[7]:= populationMatrix = circumplexForm6x6 ±. 8r3 Ï .2, r2 Ï .4, r1 Ï .6<;
MatrixForm@populationMatrixD

Out[7]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjj

1 0.6 0.4 0.2 0.4 0.6
0.6 1 0.6 0.4 0.2 0.4
0.4 0.6 1 0.6 0.4 0.2
0.2 0.4 0.6 1 0.6 0.4
0.4 0.2 0.4 0.6 1 0.6

0.6 0.4 0.2 0.4 0.6 1

y

{

zzzzzzzzzzzzzzzzzzzzz

In[8]:= populationDistribution =

MultinormalDistribution@80, 0, 0, 0, 0, 0<, populationMatrixD;

In[9]:= SeedRandom@123D

In[10]:= data1 = RandomArray@populationDistribution, 500D;

In[11]:= data2 = RandomArray@populationDistribution, 250D;  
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Command Line and Output: 

In[15]:= ComputeChiSquare@8data1, data2<, circumplexHypothesis,

8500, 250<, DataType Ï RawDataD

WBCORR Output

Hypothesis Matrix

Group Row Column Parameter Tag Fixed Value
1 2 1 1 0
1 3 2 1 0
1 4 3 1 0
1 5 4 1 0
1 6 5 1 0
1 3 1 2 0
1 4 2 2 0
1 5 3 2 0
1 6 4 2 0
1 4 1 3 0
1 5 2 3 0
1 6 3 3 0
1 5 1 2 0
1 6 2 2 0
1 6 1 1 0
2 2 1 1 0
2 3 2 1 0
2 4 3 1 0
2 5 4 1 0
2 6 5 1 0
2 3 1 2 0
2 4 2 2 0
2 5 3 2 0
2 6 4 2 0
2 4 1 3 0
2 5 2 3 0
2 6 3 3 0
2 5 1 2 0
2 6 2 2 0
2 6 1 1 0

Input Correlation Matrix 1 Sample Size = 500

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.598603 0.417062 0.233987 0.415227 0.593991
0.598603 1. 0.620032 0.417526 0.187959 0.353934
0.417062 0.620032 1. 0.580356 0.396385 0.199658
0.233987 0.417526 0.580356 1. 0.616586 0.433602
0.415227 0.187959 0.396385 0.616586 1. 0.623676
0.593991 0.353934 0.199658 0.433602 0.623676 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

Input Correlation Matrix 2 Sample Size = 250

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.612054 0.516346 0.288556 0.436875 0.556876
0.612054 1. 0.612947 0.351087 0.166406 0.291171
0.516346 0.612947 1. 0.529379 0.457793 0.155702
0.288556 0.351087 0.529379 1. 0.624697 0.387267
0.436875 0.166406 0.457793 0.624697 1. 0.563182
0.556876 0.291171 0.155702 0.387267 0.563182 1.

y

{

zzzzzzzzzzzzzzzzzzzzz
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OLS Estimates of Correlation Matrix 1

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.5981 0.406 0.205987 0.406 0.5981
0.5981 1. 0.5981 0.406 0.205987 0.406
0.406 0.5981 1. 0.5981 0.406 0.205987

0.205987 0.406 0.5981 1. 0.5981 0.406
0.406 0.205987 0.406 0.5981 1. 0.5981
0.5981 0.406 0.205987 0.406 0.5981 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

OLS Estimates of Correlation Matrix 2

i

k

jjjjjjjjjjjjjjjjjjjjj

1. 0.5981 0.406 0.205987 0.406 0.5981
0.5981 1. 0.5981 0.406 0.205987 0.406
0.406 0.5981 1. 0.5981 0.406 0.205987

0.205987 0.406 0.5981 1. 0.5981 0.406
0.406 0.205987 0.406 0.5981 1. 0.5981
0.5981 0.406 0.205987 0.406 0.5981 1.

y

{

zzzzzzzzzzzzzzzzzzzzz

2-Stage GLS Parameter Estimates

Parameter Tag Estimate Standard Error
1 0.5981 0.0128252
2 0.406 0.0199668
3 0.205987 0.0267544

Significance Test Results

Chi Square df plevel
33.1335 27 0.1927

Assessment of Multivariate Normality

Multivariate Skewness Chi Square df plevel
1 0.666646 55.5538 56 0.491696
2 1.20136 50.0566 56 0.698181

Multivariate Kurtosis Z plevel H2-tailedL
1 48.3778 0.649714 0.515877
2 47.7694 0.122539 0.902472
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