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Hayduk and Glaser (2000) asserted that the most commonly used point estimate of
the Root Mean Square Error of Approximation index of fit (Steiger & Lind, 1980)
has two significant problems: (a) The frequently cited target value of .05 is not a sta-
ble target, but a “sample size adjustment”; and (b) the truncated point estimate
R max(R 0) effectively throws away a substantial part of the sampling distribu-
tion of the test statistic with “proper models,” rendering it useless a substantial por-
tion of the time. In this article, I demonstrate that both issues discussed by Hayduk
and Glaser are actually not problems at all. The first “problem” derives from a false
premise by Hayduk and Glaser that Steiger (1995) specifically warned about in an
earlier publication. The second so-called problem results from the point estimate
satisfying a fundamental property of a good estimator and can be shown to have vir-
tually no negative implications for statistical practice.

Steiger and Lind (1980) introduced the notion of noncentrality interval estimation
asamethod for assessing the fit of a structural equation model. The fundamental ra-
tionale behind the method is that the goal of testing whether a model is perfect
should be replaced by the dual goals of ascertaining (a) how good model fit is in the
population and (b) how precisely we have determined it from the sample data.
Steiger and Lind (1980) pointed out that the comparison of nested models is
complicated by the fact that, for any data set and for any population, the more com-
plex model will always fit at least as well and usually better. Consequently, some
compensation for model complexity is desirable in a measure of fit.
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The RMSEA (root mean square error of approximation) fit index draws on the
fact that the discrepancy functions commonly employed in )2 tests in structural
equation modeling are either equal to or closely approximated by a weighted sum
of squared model discrepancies. Consequently, under fairly general circum-
stances, the population discrepancy function F*, defined as the discrepancy func-
tion one would obtain if the estimation technique were applied to the population
covariance matrix, is a not too unreasonable measure of population fit. Although
this measure is far from problem-free, it has some real advantages, most signifi-
cant of which are that it can be subjected to statistical tests and estimated with a
confidence interval.

To compensate for model complexity, and to return the index of fit to the origi-
nal metric of the covariance matrix, Steiger and Lind (1980) defined the RMSEA,
for models with v degrees of freedom, as
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Steiger and Lind (1980) concentrated on interval estimation of R, and Steiger
(1989) implemented the interval estimation technique in the computer program
EZPATH. Steiger also showed that confidence interval estimates and hypothesis
tests could be produced for population counterparts of the GFI and AGFI indexes
of Joreskog and Sérbom (1984).

In their commentary, Hayduk and Glaser (2000) expressed concern about a
commonly used point estimate for the RMSEA. Throughout this article, I will refer
to the number of observations as N, and for simplicity of notation, definen=N-1.
Define F as the maximum likelihood (or GLS or IRGLS) discrepancy function
(calculated on a sample of size N), U = nF the y2 goodness of fit statistic. The trun-
cated estimator R, is defined as

. max(U/v—l,oj )]
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The quantity under the radical is a point estimate of the squared RMSEA. It is
commonly bounded at zero to satisfy an optimality criterion (defined and dis-
cussed later) I call the primacy principle. If one uses the square root of this quan-
tity, as in Equation 2, truncating negative values at zero has the added benefit of
eliminating imaginary values of fi,.

Point estimates are frequently used directly in hypothesis testing, but not in the
case of the RMSEA. Because of the truncation at zero in equation 2, the 2 statistic
itself, rather than some function of the point estimate, is used directly for hypothe-
sis testing and the calculation of associated probability levels under a null hypothe-
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sis. MacCallum, Browne, and Sugawara (1996) discussed hypothesis tests, power
analysis, and sample size estimation based on the use of the RMSEA.
Hayduk and Glaser (2000) expressed two primary concerns about the RMSEA:

1. They examined Equation 2 and discussed the view that the truncation at zero
throws away information. They leave the reader with the vague impression that this
somehow creates practical problems and that traditional probability values calcu-
lated for the RMSEA need to be corrected in some way. Hayduk expanded on this
notion in a series of postings to the Internet discussion group SEMNET. For exam-
ple, on March 29, 1999, he stated,

We (via MAX) have changed the sampling distribution in a problematic way. In the
true-model case, we have thrown away the bottom/left half of the distribution, so 5%
OF WHAT IS LEFT OF THE DISTRIBUTION does not correspond to the top 5% of
the overall sampling distribution. One has to use about 10% of the remaining top/right
half of the distribution to cover what corresponds to the usual top 5% of the FULL
sampling distribution.

2. They imagined that the RMSEA incorporates a hidden sample size correc-
tion that makes it “an elastic tape measure that four-steppers, and others, can stretch
to let them accept models they would like to accept.”

Like Hayduk and Glaser (2000), I have my own serious criticisms of both the
RMSEA itself and the way that it is employed in some situations. For example, I
am only partly comfortable with the very serious incorporation of the index into a
Neyman-Pearson hypothesis-testing framework, and even less comfortable with
rigid adherence to fixed target values. My original intention was that the RMSEA
be employed in a more relaxed, heuristic fashion, both as an improvement on and a
release from hypothesis testing.

However, my criticisms are quite different from those of Hayduk and Glaser
(2000). Unfortunately, as I show in the following sections, their line of argument
has some serious flaws.

WHY USE A TRUNCATED POINT ESTIMATE?

The quantity to be estimated, R, the RMSEA, is defined on a statistical population.
Any point estimate of this quantity should satisfy certain optimality criteria, at least
to a reasonable approximation.

Hayduk and Glaser (2000) failed to distinguish, in their discussion, between the
particular point estimate, R, which they found fault with, and the population quan-
tity, R, which the point estimate is designed to measure. They do not mention that
(a) the test statistic used for hypothesis tests and probability level calculation does
not employ the truncated estimate, (b) the truncated estimate satisfies an obvious
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optimality criterion, and (c) hypothesis tests need not employ the best point esti-
mate for a parameter. Because these basic principles have eluded them, some re-
view is in order.

Elementary textbooks on behavioral statistics discuss qualities of a good esti-
mator, usually concentrating on unbiasedness, consistency, and efficiency. These
three principles follow from more general, common-sense notions, which might
be summarized as follows: (a) Seldom, in fact very seldom, will a statistic be ex-
actly equal to the parameter it is estimating, if the parameter space is continuous;
(b) consequently, for any observation on a statistic, there will be a sampling error,
¢, defined as the difference between the statistic and the parameter it is estimating;
(c) usually we prefer that errors not be systematically positive or negative by more
than a trivial amount; and (d) we prefer a statistic that makes small errors over one
that makes large errors. There are occasionally difficult tradeoffs among these
principles. Principle d gives rise to the notion of efficiency, that is, that all other
things being equal we prefer an estimator with low sampling variability. However,
efficiency is a long-run behavior of a statistic, and, in practice, we often have only
one chance to estimate a parameter. That is, we have the data in front of us, and we
have to make the best effort to estimate the parameter. Suppose I were to tell you
that T have two statistics that are candidates for estimates of a parameter and that
they have committed errors of estimate with the same algebraic sign, but that one
has committed an absolute error that is guaranteed to be less than or equal to the
other. Most individuals would immediately choose the statistic with the possibly
smaller error. This suggests a simple principle in statistical estimation, which1de-
fine in the following.

The Primacy Principle of Statistical Estimation

Given a statistical population P, a parameter R of that population, and a sample X of
N independent vectors of observations from P, let two statistics, f(l and fiz, both be
functions of X used to estimate parameter R. R, has sampling error &, = R—R,and R,
has sampling error €, = R,—R.Let sgn(y) be the sign function, with values -1, 0, +1

for negative, zero, and positive values of y, respectively. Suppose that, for any X
sampled from P, € and ¢, never have opposite signs (in the sense that s gn(e;)
sgn(e,) = 0). Suppose further that, for any X, |&,| < |e2]. Then we say that Ry has pri-
macy over R,.

For any data set you will ever have, the statistic that has primacy overa compet-
itor will always be as close to the true parameter as the competitor, and on some oc-
casions it will be closer. Except in rather unusual circumstances, this would seem
to be a powerful advantage.

The primacy principle arises quite naturally in connection with bounded pa-
rameter spaces, when (a) the nonpreferred statistic is unbiased, or close to it,
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and (b) the actual parameter value is close to the boundary of the parameter
space. Take, for example, multiple regression, when we are trying to estimate
the squared multiple correlation, Rf, . In this case, the parameter space (the set
of all parameter values) ranges from 0 to 1. Unfortunately, when the sample
size is small relative to the number of predictors, the “raw” sample squared
multiple correlation R? is a rather positively biased estimate of the correspond-
ing population quantity. Consequently, an “adjusted” estimator is reported fre-
quently. If there are p predictor variables, and the sample size is N, the
adjusted formula is

R _WN-DR* -p (3)
¢ N-p-1

Although it is seldom computed, a unique unbiased estimate of Rf, is also available
(Olkin & Pratt, 1958) and is (for n > p > 2) given by

&%=1—NN—‘3(1—R2)F(1,1,(N—p+1)/2,1—R2) @
-p-1

(F in the above refers to a hypergeometric function, not the F distribution.) Fre-
quently, when sample size is small and the relationship between variables is weak,
both R and R’ can be negative. In this case a “preferred statistic” satisfying the
primacy principle may be constructed by setting all negative values to zero. For the

unbiased estimator,
R}, = max(R:,0) ®)

Because the true parameter is known to be between 0 and 1, it is a certainty that
moving the negative estimate to zero reduces sampling error. It is one of those
golden moments in statistics when one can be absolutely certain one is improving
the quality of an estimate! Of course, the preferred estimate is no longer unbiased,
but in this case, the tradeoff seems acceptable. Indeed, as Kendall and Stuart (1979)
pointed out, it is impossible, when a parameter space is between 0 and 1, to con-
struct an unbiased estimator that always takes on values between 0 and 1. To elimi-
nate what they call “the absurdity of negative estimates,” they suggest the same
modification that we employ.

Point estimation of the RMSEA has much in common with point estimation of
the squared multiple correlation. Because the RMSEA is by definition
nonnegative, an estimate that is unbiased (or close to it) will of necessity take on
negative values for some values of the population parameter. For such an estimate,
eliminating those values, by setting them equal to zero, is guaranteed to reduce er-
ror of estimation for those values.
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Hence it seems that the objection of Hayduk and Glaser (2000) is ill founded, if
the RMSEA is used as originally intended, that is, to estimate fit in a single model.
It is the square root of an estimate that satisfies the statistical primacy principle,
relative to an untruncated competitor.

THE NONEXISTENT “SAMPLE SIZE ADJUSTMENT"

Hayduk and Glaser (2000) made some incorrect assumptions about the relationship
between point estimation of the RMSEA (and the proper statistical goals associated
with such estimation) and inference about a population value of the RMSEA.

For example, Hayduk and Glaser (2000) computed and plotted (their Figure 2)
x2/v values corresponding to sample values of the RMSEA point estimate. Their
graph demonstrated that, if one chooses a fixed “target value” of the point estimate
fi, (say .05), one finds that the x2/v value corresponding to a target value changes
as a function of sample size. Because these changing values of x%/v correspond to
changing probability levels, Hayduk and Glaser claimed to have discovered that a
fixed value of the RMSEA represents a “sample size adjustment” to a criterion for
good fit and that this represents a defect that must be corrected.

There are several problems with this line of reasoning. One is the assumptlon
that a probability level of a statistic has a static interpretation in terms of model fit.
This misconception has been debunked so thoroughly and so often by modern
writers on hypothesis testing and effect size estimation that its appearance is sur-
prising. Steiger and Fouladi (1997) examined this notion in connection with a
two-way analysis of variance (ANOVA) and demonstrated its falsity. Within the
same ANOVA, different tests having the same probability level can have different
implications about effect size.

In a similar way, 2 statistics based on different sample sizes, having the same
probability levels, will have different implications about the population RMSEA.
Yet Hayduk and Glaser (2000) appeared to assume, as the cornerstone of their ar-
gument, that constant ratios of Vv have the same statistical meaning. In other
words, Hayduk and Glaser have turned the truth on its ear and are now shaking it
excitedly. Needless to say, the truth is suffering.

What is particularly ironic is that, in the documentation (Steiger, 1995) to my
program SEPATH, I (a) derived the formula that generates the results in Figure 2
of Hayduk and Glaser (2000), and (b) carefully explained the fallacy of assuming
that a ¥2/v ratio has a constant meaning.

In what follows, I review the actual statistical facts and reveal exactly where
Hayduk and Glaser (2000) went wrong. I then demonstrate that their logic, trans-
ferred to another domain, would imply that some familiar measures of effect size
in ANOVA (such as the sum of squared standardized effects) are invalid.
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Recall the philosophy behind estimation of the RMSEA. It is that the popula-
tion badness of fit is seldom zero, and our task is to ascertain how large it is and
how precisely we have determined it. Yet early in their argument, Hayduk and
Glaser (2000) discuss probability levels, derived under the assumption that popu-
lation badness of fit is zero (i.e., that fit is perfect).

Assume, for the time being, that an RMSEA of a given value (say .05) in the
population has a fixed interpretation (later we will question this assumption, but
for reasons completely different from those of Hayduk and Glaser [2000]). Our job
as statisticians is to estimate the population RMSEA.

Steiger, Shapiro, and Browne (1985) demonstrated that, under reasonable as-
sumptions, the 2 statistic U = nF has a distribution that is approximately Ao
where A, the noncentrality parameter, is given by

A =nF* ©)
The expected value of a )}, , variate is
EU)=v+A )
Hence, a bias-corrected (based on the asyﬁptotic result) point estimate of F* is
E =U-v)/n 8)

Whenever U is less than v, the unbiased estimate will be negative. However, the
primacy principle dictates that, on any occasion where that occurs, we can always
obtain a better estimate (i.e., one that is closer to the parameter value than the unbi-
ased estimate) by simply changing the value to zero. Hence the revised statistic,

E' = max{(U-v)/n, 0} )]

There are numerous trivial consequences of Equations 6 and 7. For example,
we note that

E(U)=v+nF* (10)

For constant degrees of freedom, this tells us that the mean of the ? goodness-of-fit
statistic will increase as a function of n, for a given value of F*. Because R, the
RMSEA, is, for fixed v, a simple transformation of F*, its mean will also increase
asa function of n. Another way of viewing this is that, as n increases, it will require a
larger %2 statistic to imply an equivalent R.
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One obvious implication of this, stressed by Steiger (1995), is that the quantity
%2/v is not a stable indicator of the size of population badness-of-fit function F*. Be-
cause Hayduk and Glaser appear to be unaware of my earlier discussion, Ireproduce
ithere. It may be shown easily that a bound on the point estimate of R implies a corre-
sponding bound on the ratio of the 2 statistic to its degrees of freedom. Specifically,
suppose, for example, you have decided that, for your purposes, the point estimate of
the RMSEA index should be less than some value c, that is,

A

R<c (D
Steiger (1995) showed (his Equation 91) that this inequality implies

g<1+nc2 (12)
v

So, for example, the rule that the point estimate of the RMSEA should be less than
.05 translates into the equivalent rule (Equation 92, Steiger [1995]) that

v 400

This agrees with the calculations of Hayduk and Glaser (2000).

However, the preceding result is not evidence that the RMSEA has a hidden
“sample size adjustment.” Rather, it is evidence that the noncentrality parameter is
a function of n! It appears to be a sample size adjustment, if one adopts the mis-
taken belief that y2/v ratios have a stable statistical implication. They do not. I spe-
cifically warned about this in Steiger (1995):

Rules of thumb that cite a single value for a critical ratio of %*/v ignore the point that
the chi-square statistic has an expected value that is a function of degrees of freedom,
population badness of fit, and N. Hence, for a fixed level of population badness of fit,
the expected value of the chi-square statistic will increase as sample size increases.
The rule of Equation 91 compensates for this, and hence it may be useful as a quick
and easy criterion for assessing fit. To avoid misinterpretation, we should emphasize
at this point that our primary emphasis is on a confidence-interval-based approach,
rather than one based on point estimates. The confidence interval approach incorpo-
rates information about precision of estimate into the assessment of population bad-
ness of fit. Simple rules of thumb (such as that of Equation 91) based on point esti-
mates ignore these finer statistical considerations. (p. 3670)

The notion that a x?/v ratio has a stable statistical implication is a remnant of an ear-
lier time, when the relationships between the likelihood ratio statistic, population
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badness of fit, and the noncentral chi-square distribution were not yet fully under-
stood. This notion is misguided in the present context, because the noncentrality pa-
rameter affects the mean and variance of the distribution of the test statistic and is it-
selfa function of sample size. Equally erroneous is the notion that, across values of
n, the probability level of an observed y2 has a constant interpretation. The only sit-
uation in which this supposition would be correct is if F*, the population discrep-
ancy function, is known or assumed to be zero. Of course, if that were true, it would
be nonsensical to be estimating F*.

The fallacy in the analysis of Hayduk and Glaser (2000) is grasped more clearly
by constructing a very precise analogy between estimation of badness of fit in
structural equation modeling and estimation of effect size in ANOVA.

Consider a one-way fixed effects ANOVA, with J groups and N observations
per group. A reasonable measure of effect size is the Root Mean Square Standard-
ized Effect, defined by Steiger and Fouladi (1997) as

v [ Ls (ﬁj (9
J—14

(Note that the “averaging” is by the number of degrees of freedom, rather than the
number of groups, to compensate for the one restriction imposed on the effects.) The
standard F statistic for the test of nil effect in ANOVA has a distribution that is
Fu1u2p,1.€.,noncentral Fwith v, and v, degrees of freedom, and noncentrality param-
eter A. Degrees of freedom are v, =J— 1 and v, =J(N—1). There is a direct relation-
ship between W and A, given by

A (15)
(J-DN

Conversely, of course,
A=(-DNF¥? =v NP’ (16)

An unbiased estimator of A is obtained from the observed F statistic as

i=vl[ v, F—l) (17
v, =2

Consequently, an unbiased estimator of ‘P2 is

7ol
Nilv, =2

-1 a
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Suppose you have a “target value” in mind for 2 , Tepresenting a “minimally
trivial” average squared standardized effect. If this target is c?, there is a
one-to-one correspondence between a target ¢2 and the F statistic, just as there is
with the RMSEA in structural modeling. Specifically, we have

¥7 +1) 19)

Note that the value of F corresponding to a target value of ¥? varies as a func-
tion of N. Again, this is because the noncentrality parameter is a function of M.
Suppose, for simplicity, we confine ourselves to a four-group ANOVA. In that
case, we have

(L+ N )(4N —6) (20)

4N — 4

Figure 1 shows the relationship between target values of F and sample size N
for selected values of T2 . Note the similarity between this ﬁgure and Figure 2 in
Hayduk and Glaser (2000).

3.0

F =

P S UUUURUS APPSR S AP

Target F

1.0 b B

0.6

N

FIGURE 1 F values corresponding to target values of ¥* for a one-way ANOVA with four
groups.
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Would one, after viewing Figure 1, conclude that the variance of standardized
effects (or, alternatively, the variance of population means, in standard deviation
units) is an ill-founded measure of effect size in ANOVA and incorporates a previ-
ously unnoticed “sample size adjustment”? One hopes not, but one might reach
such a questionable conclusion following the logic of Hayduk and Glaser.

IMAGINARY PENALTIES OF TRUNCATION

Hayduk and Glaser (2000) expressed concern that the truncated point estimate
of the RMSEA creates problems in practice and stated (incorrectly) that “Proper
models would result in zero RMSEA values (via use of Max) about half the
time, while nearly proper models would result in zero RMSEA values nearly
half the time” (p. 28).

The statement is overly pessimistic, because it confuses “proper” with “per-
fect.” Perfect models (i.e., those with zero RMSEA values) occur with probability
very close to zero in practice.

The question arises, “How often in practice should we expect zero values of the
RMSEA point estimate?” Note that this is an empirical question, and it appears
that the answer is “very seldom,” because only a tiny minority of the structural
equation models ever published report 2 statistics that are less than or equal to
their degrees of freedom. Using the asymptotic noncentral (2 approximation, one
may estimate how frequently such estimates will be encountered. One simply eval-
uates the following probability:

Pr(X 0 <V) @1)

For example, if the %2 statistic has 15 df, and if, using the guidelines in
MacCallum et al. (1996), one chooses a sample size that will yield a power of at
least .80 to reject the hypothesis that R < .05 when R = .08, values of the point esti-
mate will be truncated at zero less than 1% of the time.

Consequently, the empirical evidence represented by several decades worth of
published work in factor analysis and structural equation modeling suggests that
Hayduk and Glaser are seriously overstating the extent of the problem caused by
truncating the point estimate. Very few models fit well enough to generate point
estimates of R that are zero, when sample size is adequate to establish reasonable
precision.

The question then arises, “What damage is done on those occasions when the
truncated point estimate is zero?” The answer would appear to be very little. The
point estimate of the RMSEA is never used in statistical testing or interval estima-
tion. The 2 statistic is used directly to construct the confidence interval, so no part
of its sampling distribution is “thrown away” by truncating the point estimate. Be-
cause A = nv R2, it follows immediately that any hypothesis about R implies a
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noncentral %2 distribution with a specific A. So, for example, to test the hypothesis
that R < .05, one simply compares the observed value of U'to a noncentral %2 distri-
bution with A = nv(.05)2 = nv/400. Contrary to what one might infer from the com-
ments of Hayduk and Glaser (2000), for values of U that are less than or equal to v,
the reported probability level for the test statistic shows appropriate variation, al-
though the point estimate remains (quite properly, according to the statistical pri-
magcy principle) at zero.

Clearly, if one is comparing two models with zero point estimates, one cannot
differentiate between the models on the basis of these point estimates. This penalty
of truncation would seem minimal, because this type of situation would tend to ex-
ist either (a) when population fit is actually very outstanding for both models or (b)
when precision of estimate is inadequate to distinguish between models.

CONCEPTUAL FOUNDATIONS FOR THE
RMSEA—SOME FURTHER COMMENTS

Although the misconceptions of Hayduk and Glaser (2000) render their commen-
tary largely irrelevant to the use of the RMSEA in assessing the fit of structural
models, I should stress that, in my view, this index, like any attempt to describe a
multivariate quantity in a single summary measure, can certainly be questioned.

The RMSEA is a population measure. It is a simple transformation of the “pop-
ulation discrepancy function.” A key problem is the extent to which the population
discrepancy function adequately describes badness of fit.

Recall that the population discrepancy function, if it is from the GLS family, is
a weighted sum of squared discrepancies. (The ML discrepancy function is closely
approximated by an iteratively reweighted GLS discrepancy function.) The choice
of the weight function is made to allow the discrepancy function to have a conve-
nient asymptotic probability distribution.

For example, the GLS discrepancy function is of the form ¢’ W e, where eisavec-
tor of discrepancies between the observed and reproduced covariance matrices and
nW is the inverse of the asymptotic covariance matrix of the observed covariances.
The key question is the extent to which the use of “sample directed” weighting (i.e.,
weighting that is used to accomplish desirable distribution of a sample quantity) cre-
ates problems in computing a measure of “population badness of fit.”

To bring the problem into sharp focus, consider a simple special case: the hy-
pothesis that the correlation p between two variables is po, a constant. In this case,
for a given level of difference between the actual correlation p and the hypothe-
sized correlation p, the value of the population discrepancy function becomes
greater as po departs from zero, primarily because the sampling variance of the
correlation coefficient decreases as p approaches 1.

Some representative values are shown in Table 1. Note that as po remains
within the levels typically encountered, the statistical weighting of discrepancy
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TABLE 1
Value of the Population Maximum Likelihood
Discrepancy Function A and RMSEA R for the
Hypothesis p = po

Po p F* R
.00 .05 0025 .0500
25 30 .0029 .0541
45 .50 .0041 0645
.65 .70 .0085 0919
.85 90 .0463 2152

Note. RMSEA = root mean square error of
approximation.

has little effect. However, as po approaches 1, the impact of the weighting becomes
substantial. Of course, what one considers a “proper measure” of the discrepancy
between two correlations is itself open to debate and will therefore color one’s per-
ception of this phenomenon.

My space is limited here, and a full description of what I see as problems at the
foundation of the RMSEA requires a different venue. However, if one considers
the structure of the measure, it seems clear that the use of precise numerical “cutoff
values” (like .05) should not be taken too seriously, anymore than a precise value
for its analog, the RMSSE in ANOVA, or similar measures like “Cohen’s d.” In
Steiger (1999), I described situations in ANOV A where different levels of experi-
mental effect give rise to identical values for the RMSSE. So it is, in essence, im-
possible to define a single value of the RMSSE that conveys a given “level of
experimental effect.” In a rather analogous (but somewhat more serious) way, it is
possible to take issue with any particular RMSEA value as a precise indicator of
model fit. This does not render the measure useless, or even less than valuable,
anymore than interval estimation of the root-mean-square standardized effect in
ANOVA is rendered useless by the issues discussed in Steiger (1999). However,
religious adherence to a particular numerical guideline not only violates the origi-
nal spirit in which Steiger and Lind (1980) offered the measure, but also strikes me
as a mistake.

The fundamental contributions of the RMSEA and the noncentrality interval
estimation approach are that they rescue model-fitting from the destructive grasp
of accept-support statistical testing and place it on a much firmer foundation,
where increased sample size and experimental precision work for, rather than
against, the investigator’s interests. These contributions were an important step
forward, and with careful critical analysis, may serve as the foundation for further
improvements in structural modeling.
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